Online Appendices for
“The Time Variation in Risk Appetite and Uncertainty”

A The state variables

A.1 DMatrix representation of the state variables

In this section, we show the matrix representation of the system of ten state variables in this economy.
The ten state variables, as introduced in Section 3, are as follows,

K = [etvpﬁntaﬂ-taltagﬁﬁtantalptaqt]la

where {p¢,n:} denote the upside uncertainty factor and the downside uncertainty factor, as latent variables
extracted from the system of output growth (i.e., change in log real industrial production index); m; represents
the inflation rate; [; represents the log of corporate loss rate; g: represents the log change in real earnings; x:
represents the log consumption-earnings ratio; n: represents the log dividend payout ratio; Ip; represents the cash
flow uncertainty factor, as the latent variable extracted from the system of corporate loss rate l; ¢: represents
the latent risk aversion of the economy. The state variables have the following matrix representation:

Yit1 = p+ AY: + Zwita, (A1)

where wit1 = [Wp,t4+1, Wn,t41, Wr,t4+1, Wip,t41s Win,t41, Wg,t41s Wi, t4+1, Wn,t4+1,Wq,t+1] (9 X 1) is a vector comprised
of eight independent shocks in the economy. Among the nine shocks, {wr i+1,Win,t41,Wg t41, Wi, t+1,Wn,t41}
shocks are homoskedastic. The conditional variance, skewness and higher-order moments of the following four
centered gamma shocks—wp, t41, Wn,t+1, Wip,t+1, and wq,:4+1 —are assumed to be proportional to ps, n¢, Ips, and g;
respectively. The underlying distributions for the rest four shocks are assumed to be Gaussian with unit standard
deviation.

The constant matrices are defined implicitly,
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Given the moment generating functions (mgf) of gamma and Gaussian distributions, we show that the
model is affine, Vv € IR,

My (v) := E; [exp(v'Yi41)] = exp(v/pn + V' AY2) E; [exp(v' Bwiq1)]

=exp |V So + %V'Slﬂothe’"51u + fs() Yz + Sa(v)vn |, (A.5)
where Sp = p (10 x 1),
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oo(v) = V'Ze9, (A.14)

where M,; denotes the j-th column of the matrix M.

A.2 Consumption growth

Consumption growth in this economy is endogenous defined and can be expressed in an affine function:

ACt+1 =  gt+1 + A/ﬁ‘/t+1 (A15)
= c+cY:+ i Zwiy, (A.16)
(A.17)
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where co = go +K0,c1=[0 0 0 0 0 1 1 0 0 0],and
-pg€+pn9-

Pgp T Prp
Pgn + Prn

C2 = . (A.18)

B Asset Pricing

In this section, we solve the model analytically. First, given consumption growth and changes in risk
aversion, the log of real pricing kernel of the economy is derived as an affine function of the state variables. Next,
we show that asset prices of claims on cash flows from three different asset markets can be expressed in (quasi)
affine equations. The model is solved using the non-arbitrage condition. The goal of this section is to derive the
analytical solutions for the expected excess returns, the physical variance of asset returns and the risk-neutral
variance of asset returns in closed forms. The implied moments are crucial for the estimation procedure.

B.1 The real pricing kernel

The log real pricing kernel for this economy is given by,

mepr = In(B) — yAcit1 + 7AG+ B.1)
= mo+maY; +miTwiy, (B.2)
where mo = In(8) + v(go — go — ko), M1 = {O 00 00 v —y 00O fy]/, and
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As a result, the moment generating function of the real pricing kernel is, Vv € IR,
E;[exp(vmit1)] = exp [l/mo + Z/mlei]
exp {[~vop(ma) —In (1 — vop(ma))|pe + [~von(ma) — In (1 — von(ma))] ne}
exp {[~vop(m1) — In (1 — voy,(ma))]lpe + [~vog(mi) —In(1 —vog(ma))] g}
1
exp {[—I/aln(ml) —In(1 —vo(m1))]vn + §u2 [miSlEOtheTSﬁml} } , (B.4)
where mo, m1, mz, S1, and >otheT are constant matrices defined earlier, and
Up(ml) = mllzoly (B.5)
on(mi1) = miTez, (B.6)
Ulp(ml) = m'12.4, (B7)
Oln (ml) = m'12.5, (BS)
O’q(ml) = m'IE.g. (Bg)
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Accordingly, the model-implied short rate rf; is,

e = —In{B: fexp(men)]} (8.10)
= —mo—mbLY; (B.11)
+ [op(ma) +1In (1 = op(m1))] p + [on(ma) +In (1 — gn(ma))] ne (B.12)
+  lop(ma) +In (1 — o (ma))]lpe + [og(ma) +In (1 — og(ma))] @ (B.13)
+  [owm(mi) +In(1 — o1 (ma))] vs — % [m'lleJOtherSle] , (B.14)
= rfo+rfiYs. (B.15)

To price nominal assets, we define the nominal pricing kernel, M1, which is a simple transformation of the log
real pricing kernel, my1,

Mer1 = Mgl — Tt (B.16)
= mo+maY: + miBwiy, (B.17)

Wheremozmo—ﬂo’mlzml—[o 0 01 00 0 0 O 0]”and

(B.18)

meo = ma2 —

The nominal risk free rate rf, is defined as — In { E; [exp(ms1)]}-

B.2 Valuation ratio

It is a crucial step in this paper to show that asset prices are (quasi) affine functions of the state variables.

Defaultable Nominal Bonds In the paper, we assume that a one period nominal bond faces a fractional
(logarithmic) loss of I;. Given the structures assumed for I; and m; and the model-implied log pricing kernel, the
price-coupon ratio of the one-period defaultable bond portfolio is

PCtl = Et [exp (ﬁlt+1 — lt+1)] (B].Q)
= exp (by +b1'Ys), (B.20)

where b} and b}’ are implicitly defined. Consider next a portfolio of multi-period zero-coupon defaultable bonds
with a promised terminal payment of C' at period (¢t + N). As for the N-period bond, the actual payment will be
less than or equal to the promised payment, and the ex-post nominal payoff can be expressed as exp (¢ — li+n).
We ignore the possibility of early default or prepayment. Then, the price-coupon ratio of this bond at period
(t+ N — 1), one period before maturity, PC{, y_1, is exp (b5 + bi'Yeyn—1). Given the Euler equation and the
law of iterated expectations, it then follows by induction that all earlier dated zero-coupon nominally defaultable
corporate bond (maturing in N period) prices are similarly affine in the state variables, in particular:

rcN = B, [J\Zﬂpcﬁgl] ,
— exp (bgV n b{‘”Yt) . (B.21)

Therefore, the assumed zero-coupon structure of the payments before maturity implies that the unexpected returns
to this portfolio are exactly linearly spanned by the shocks to Y;.
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Equity It is especially not obvious for equity price-dividend ratio, of which we provide proofs below. First,
we rewrite the real dividend growth in a general matrix expression:

Adit1 = gep1 + Anea
= ho+ hlzva-ﬁ + h'12wt+1, (B.22)

where ho = go+ 70,1 =0 0 0 0 0 1 0 1 0 0], and
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The price-dividend ratio, PD; = E, |:Mt+1 (%f)t“)], can be rewritten as,

P = 3o (S ). (321
n=1

j=1
Let F{* denote the n-th term in the summation:
Ftn =k |:€Xp <Z Mmi4j + Adt+j):| 5 (B25)
j=1

and Fy' Dy is the price of zero-coupon equity that matures in n periods.

To show that equity price is an approximate affine function of the state variables, we first prove that
F{*(¥n > 1) is exactly affine using induction. First, when n =1,

Fl' = Eilexp(mit1 + Adeya)]
= E:{exp [(mo + ho) + (m3 + h3)Y; + (m) + h})Zwita]}
= exp [(mo + ho) + (M5 + h2) Y]
exp{[—op(m1 + h1) —In (1 — op(ma + h1))]pt + [—on(ma + h1) —In (1 — on(ma + ha)) e}
exp {[—owp(m1 + h1) —In (1 — oip(ma + ha))] lpe + [—0g(ma + k1) — In (1 — og(ma + h1))] g:}

1 4 4 o er ’
exp {[—aln(ml +ha) = In (1= o1 (ma + ha))]va + 5 [(m1 + h})S1 =0T S (my + hl)] }
= exp (e(l) + e%'Yt) , (B.26)

where mo, m1, ms, ho, h1, hz, S1, and X°"°" are constant matrices defined earlier, and

op(mai+hi) = (mi+hi)Ze, (B.27)
on(mi+h1) = (mi+hi)Sez, (B.28)
gp(mi+hi) = (mi+hi)Te, (B.29)
om(mi+hi1) = (mi+hi)Ses, (B.30)
gq(mi+hi) = (mi+hi)Ze, (B.31)
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and ef = mo + ho + [—0um(ma + k1) — In (1 — o (ma + k1)) v + % [(M] + R7)S1 X" 8] (M1 + ha)], and

0
—0pMn1 =+ hl) — ln(l — crp(ml + hl))

—on(m1+h1) —In(l — on(my + h1))
0
1 0
€1 = M2 —+ h2 —+ 0 (B32)
0
0
*le(ml + hl) —1In (1 — (J'lp(ml —+ hl))
[ —0q(m1+h1) —In(1—0oq(m1 + ha)) |
Now, suppose that the (n — 1)-th term F"~" = exp (eo + e VY; ), then
F' = FE;|exp <Z Miy; + Adt+j>
n—1 1
= {Et+1 exp(mi+1 + Adiy1) exp (Z Mitjr1 + Adt+]+1> }
Jj=1 i
n—1 b
= exp(me+1 + Adit1) Erqr exp <Z Meyj+1 + Adr+g+1)
Jj=1 i
o
= E; [e p(mit1 + Adit1) exp ( ol 6?_ Yt—{-l)]
= exp(ey +el'Ys) (B.33)
where ef and e}’ are defined implicitly.
Hence, the price-dividend ratio is approximately affine:
PDt = ZEt exp <th+j +Adt+j>:|
n=1 j=1
- >
n=1
= Z exp (eg + e’f'Yt) . (B.34)
n=1
|

B.3 Log asset returns

Log return of zero-coupon nominally defautable corporate bonds maturing at t + N
Given the exact exponential affine expression of the valuation ratio of this asset (see derivations above), the log
return can be derived an approximate linear closed form:

- PCNT 41 C

rtj’_’{v =1In <;3+Cl'tN In (5) In (IT;11)

1+ exp (b{f*l n b’l\'_l'Y;H)
exp (o) + bY5)

=m41 +In

exp (bg\’*l LNy RNV N
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1+cxp(bév71+bjlv_llY

exp(bé\] +b{v'§_’)
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= ggb + £§blY +7° 2wt+1, (B.35)

where Ffil is the log nominal return of corporate bond from ¢ to t 4 1, Egb is constant, gfb is a vector of state
vector coefficients, and 7 is a vector of shock coefficients. Thus, this step involves linear approximation.

Log nominal equity return We apply first-order Taylor approximations to the log nominal equity return,
and obtain a linear system,

. P14+ D
thqu:111< t+1Pt t+1Ht+1)

=1In (%) In (Dggl) In (IT¢11)
L+> 00 exp(eq + e’ Yet1)
> omer exp (ef + e’ Ye)
Do P (€6 tetV) e o 3L, exp (ef + e'Y) el
e em(frer’ ) % exp (e +er'Y)
>, exp(egﬁ»e?'f’)

11 Y, + 7Y Swiga, (B.36)

= Ad¢41 + 41+ In {

~ Adi41 + Tey1 + const. +

where 7;{, is the log nominal return of equity from ¢ to ¢+ 1, qu is constant, Efq is a vector of state vector
coefficients, and 7°? is a vector of shock coefficients. Thus, this step involves linear approximation.

General expression To acknowledge the errors that are potentially caused by the linear approximations
(the Taylor approximation in log price-dividend ratio in the return equation), we write down the return innovations
for asset ¢ with an idiosyncratic shock:

Tie1 — B (7’1}1) =7/ Swig1 + e, (B.37)
where E} (?fé“) is the expected return, 7 (10 x 1) is the asset i return loadings on selected state variable
innovations (the choice of which depends on the asset classes), and €7, is the Gaussian noise uncorrelated with
the state variable shocks but may be cross-correlated (with other asset-specific shocks). The Gaussian shock &},
has an unconditional variance o?.

B.4 Model-implied moments

In this section, we derive three model-implied asset conditional moments— expected excess returns, phys-
ical and risk-neutral conditional variances of nominal asset returns. The moments are crucial in creating the
moment conditions during the third step of model estimation.

B.4.1 One-period expected excess return

We impose the no-arbitrage condition, 1 = Ei[exp(met1 + 7iq1)] (Vi €{equity, treasury bond, corporate
bond}), and obtain the expected excess returns. Expand the law of one price (LOOP) equation:

1 = Et[exp(ﬁlt+1 + ?;L;+1)]
= exp [Et(mt+1 + Ei(Fi }
n

exp{[ op(Tin 4+ 1) — 1 (1 oy (01 + rﬂ'))] e+ [fan(ﬁl +7)—In (1 — o (L + ;ﬂ))] }

exp { [f%(ml +7)—In (1 — o (s + Fi))] Ipe + [faq(ml +7#)—In (1 — (T + r))] qt}

exp { [—Uln(ml + 17") —1In (1 —om(my + 7"‘))} vn}

exp {% [(m; + 7)) 81zt 81 (g + ) + a?] } , (B.38)
where 21, 7%, 03, S1, and X°"°" are constant matrices defined earlier, and

op(ma +?'1) = (m _+_7~;u)2.17
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on(ms +7) = (my+7)Tez,
op(my +7) = (M) +7) S,
om(ms +7) = (M) +7)Zes,
oo +7) = (M) +7")De. (B.39)

Given the nominal risk free rate derived earlier using real pricing kernel and inflation, the nominal excess return
is,
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(B.40)
where

op() = TZe1, (B.41)

on(T) = 7Yea, (B.42)

op(F) = 7'Dea, (B.43)

oin(T) = 7Ses, (B.44)

oo(7') = 7'3e0, (B.45)

op(ma +7°) = (my+7")Te, (B.46)

on(ma +7) = (M) +7")Dea, (B.47)

op(mi + ;‘4) = (mi+ 7‘4’)2.47 (B.48)

om(m1+7) = (M +7")Zes, (B.49)

oo(Ma +7°) = (mi+7")Teo. (B.50)

B.4.2 One-period physical conditional return variance
The physical variance is easily obtained given the loadings:

2

VARG = (0n@) o1t (0) e+ (00)) e+ (00)

. 2 . .
+ (azn%")) vy + 7 81 BT ST 4 o7 (B.51)

B.4.3 One-period risk-neutral conditional return variance

To obtain the risk-neutral variance of the asset returns, we use the moment generating function under the
risk-neutral measure:
E, [exp (ﬁu_H + llﬂJrl)]
Ey [exp (mi11)]

mg fe ([Fipasv) =
— exp {Et(mt+1 +UE( rt+1}
exp{[ op (g + vt —ln(l—ap ma + T ))}pt}
exp{[ on(my + v —ln(l—an my + v ))]nt}
{

exp [ o1p(Mma 4+ v7) —In (1 — op(ma er«'a))] lpt}
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exp [ oq(my + vt) — ln(l—aq(ﬁl—ky?fi))] qt}

exp {% [(/'rﬁi + ") 81 BT S (hy + 1) + 1/205] }
exp { E(Me+1)}

exp {[=op(ma1) —In (1 = 0p(ma))] pr + [=on(ma) —In (1 — on(ma))] e}
exp {[—oup(m1) — In (1 = 01 (M2))] Ips + [—0q(Ma) — In (1 — 0(m1))] ¢}

—~ — 17 other —~
exp {[—aln(ml) —In (1 — aln(ml))} Un + 5 [m’l,S’lE th S{ml}}

exp [ om(ma +vr ) In (1 — o (ma +1/’7‘4))] Un}

~ ~ T~

exp { vE:( ’I“H_l }

{
oot (282
ooy (] )
o - () )
o[- (]
AWw), (B.52)
where
AW) = exp { {ﬂln(mﬁ’i) I (1 _1"’_”((7?%1’;#))] vn}
+ exp {% [(m’l 1 Ui §, BT S (7 + vt — T S1ECeT Sy + u%,?] } (B.53)
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The first-order moment is the first-order derivate at v = 0:

8m9ft (Tt+1, )

EtQ('FLtJrl) = 8—| =
i op(Ma)o, (7) o (1) () o1p(M1)oi, (7°) Oq(%l)aq(?‘"i)
= E + -2 L + - + Ipe -
o)+ Sy T T —eamy) T 1= o () 1— o (m1)
b am(ma)on() g sether g1 i (B.59)

1 — o (ma)

Note the similarity between E;(7i,,) — EZ (7i,1) from this equation and the equity premium derived before using
the no-arbitrage condition. The second-order moment is derived,

. . 2
B2 ((711)°) = (BE (i)
. . 2
82m9ftQ(7A"§+1;V) 8mgftQ(FtL+l§V)
—|I/:O - 8—V|V:0

VARE (741)

ov?
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~q 2 . .
Uln(r,?, )) vn + 7Y S ZOtheT G F 4 62
1

1-— oln(m

C Variables and parameters

Table C.1: Variables. (In order of first appearance)

(B.60)

Symbol

C consumption level

Q¢ the relative risk aversion state (RRA) variable

me log real pricing kernel

Ct ln(Ct)

q In(Q:)

Acy log change in consumption

Agy log change in RRA of per period utility of the representative agent

H, external habit level (as in Campbell and Cochrane, 1999)

0. log change in the real industrial production index, or growth

D upside macroeconomic uncertainty state variable, or “good” uncertainty,
or shape parameter of the upside macroeconomic shock

Nt downside macroeconomic uncertainty state variable, or “bad” uncertainty,
or shape parameter of the downside macroeconomic shock

uf growth disturbance

Wp, ¢ upside macroeconomic shock

Wn,t downside macroeconomic shock

Y, e macroeconomic state variables consisting of {6, p¢, n:}

le log corporate bond loss rate

ul loss rate-specific shock

Wip,t upside loss rate (cash flow) shock

Win,t downside loss rate (cash flow) shock

Ipt upside loss rate (cash flow) uncertainty state variable,
or shape parameter of the upside loss rate shock

th in financial state variables consisting of {l:,lp:}

gt change in log earnings

ud earnings growth-specific disturbance

Wg,t standardized earnings growth-specific shock

Kt log consumption-earnings ratio

uy consumption-earnings ratio-specific disturbance

Wit standardized consumption-earnings ratio-specific shock

Nt log dividend payout ratio

uy dividend payout ratio-specific disturbance

Wn, ¢ standardized dividend payout ratio-specific shock

Ady log change in dividend

ud risk aversion-specific disturbance

Wa,t risk aversion shock

Tt inflation

uy inflation-specific disturbance

Wit standardized inflation-specific shock

yother a vector of non-macro state variables, [, lt, gt, fit, ¢, [Dt, q¢]’

Y: a vector of all 10 state variables, [Y;™**’, Y,7*™']’

Wy a vector of 9 independent shocks, [Wp,t, Wn,ts Wty Wip,t, Win,t, Wa,ts Wr,ts Wty Wa,t]

Mt log nominal pricing kernel

rf . nominal risk free rate

pet log price-coupon ratio of one period defaultable bond portfolio

pely log price-coupon ratio of N-period defaultable bond portfolio

PD; price-dividend ratio

i log nominal asset return for asset 4, ¢ € {eq, cb}

Eqi (ri41) expected return for asset i

RP} model-implied one-month expected excess returns for asset @

A.10



VAR, = VAR (7i11) model-implied one-month expected physical variances for asset ¢
VAR;’Q = VARtQ (7i1) model-implied one-month expected risk-neutral variances for asset i

RV AR: empirical benchmark of one-month realized physical variances for asset 4

QV AR;? empirical benchmark of one-month expected risk-neutral variances for equity
o monthly earnings

raPFX Bekaert-Engstrom-Xu’s financial proxy to risk aversion

uncBEX Bekaert-Engstrom-Xu’s financial proxy to macroeconomic uncertainty

Table C.2: Parameters.

Symbol

ol constant utility curvature parameter

a,b parameters in @

B constant discount factor

0 unconditional mean of growth

Do AR(1) coefficient of growth

myp sensitivity of output growth on lagged upside macroeconomic uncertainty
My, sensitivity of output growth on lagged downside macroeconomic uncertainty
p unconditional mean of p;

n unconditional mean of n:

Oop scale parameter associated with the upside macroeconomic shock, wy ¢, in 6;
Oon scale parameter associated with the downside macroeconomic shock, wy ¢, in 6;
Pp AR(1) coefficient of p,

Pn AR(1) coefficient of n

Opp sensitivity of p: on wyp ¢

Onn sensitivity of n; on wn ¢

lo constant in the dynamic process of I,

oul AR(1) coefficient of I,

mip sensitivity of loss rate on lagged upside macroeconomic uncertainty

Min sensitivity of loss rate on lagged downside macroeconomic uncertainty

Oip sensitivity of loss rate on the upside macroeconomic shock wp,;

Oin sensitivity of loss rate on the downside macroeconomic shock ws, ¢

Oup scale parameter associated with wip ¢ in [;

Olin scale parameter associated with wip ¢ in [;

Ip unconditional mean of Ip;

In constant shape parameter of wiy, ¢

Olplp sensitivity of Ip; on wip.

Plp AR(1) coefficient of Ip,

jo ¥ constant in the dynamic process of variable j;

pi; * AR(1) coefficient of variable j;

pPjimac ¥ sensitivities of variable j; on lagged macroeconomic state variables Y;™%¢
pj.fin ¥ sensitivities of variable j; on lagged financial state variables th o
*

Ojp sensitivity of variable j; on the upside macroeconomic shock wp ¢
Ojn ¥ sensitivity of variable j; on the downside macroeconomic shock wn, ¢
ojip** sensitivity of variable j; on the upside loss rate shock wip ¢

*x sensitivity of variable j; on the downside loss rate shock win ¢

ojj * standard deviation of the variable j; residual

qo constant in the dynamic process of risk aversion g

Paq AR(1) coefficient of g

Pap sensitivity of risk aversion on lagged upside macroeconomic shock
Pan sensitivity of risk aversion on lagged downside macroeconomic shock
Ogp sensitivity of risk aversion on the upside macroeconomic shock wyp ¢
Oan sensitivity of risk aversion on the downside macroeconomic shock wny,
Oqq scale parameter associated with the risk aversion shock wq ¢

v} constant vector in the state variable system (10 x 1)

A autocorrelation vector in the state variable system (10 x 10)

b)) scale / volatility parameter matrix of the 9 shocks (10 x 9)

mo constant in the real pricing kernel process

my sensitivity vector of real pricing kernel to state variable shocks

All



ma sensitivity vector of real pricing kernel to state variable levels

mo constant in the nominal pricing kernel process

™mi sensitivity vector of nominal pricing kernel to state variable shocks

ma sensitivity vector of nominal pricing kernel to state variable levels

b} constant in the log price-coupon ratio of one period defaultable bond portfolio
bi sensitivity vector of the log price-coupon ratio on state variable levels

by constant in the log price-coupon ratio of N-period defaultable bond portfolio
by sensitivity vector of the log price-coupon ratio on state variable levels

3 constant in the log return generating process of asset 4

£t sensitivity vector of log asset return ¢ on lagged state variable levels

T asset return 7 loadings on state variable shocks

o unconditional volatility of idiosyncratic return residuals

X ¢+ loadings on the instruments

x*"e macroeconomic uncertainty loadings on the instruments

a vector of unknown parameters in the GMM system
estimates of X where X can be a parameter or a variable
*for all j € {g,k,m, 7}
** for all j € {g,k,n}:

D Supplementary Tables and Figures

Table D.1: Summary Statistics of Financial Instruments Spanning Risk Aversion

This table presents summary statistics of the 6 financial instruments that are used to span our risk
aversion measure: “tsprd” is the difference between 10-year treasury yield and 3-month Treasury yield;
“csprd” is the difference between Moody’s Baa yield and the 10-year zero-coupon Treasury yield;
“EY5yr” (“DY5yr”) is the detrended earnings (dividend) yield where the moving average takes the 5
year average of monthly earnings yield, starting one year before; “rvareq” and “rvarcb” are realized
variances of log equity returns and log corporate bond returns, calculated from daily returns; “qvareq”
is the risk-neutral conditional variance of log equity returns; for the early years (before 1990), we use
VXO and authors’ calculations. Bold (italic) coefficients have <5% (10%) p-values. Block bootstrapped
errors are shown in parentheses. The sample period is from 1986/06 to 2015/02 (345 months).

tsprd csprd DYbyr EY5yr rvareq qvareq rvarch
Correlation Matrix

tsprd 1 0.3524 0.2595 0.2526 0.1269 0.1244 0.2952
csprd 1 0.4990 0.5083 0.4786 0.5988 0.5330
DYb5yr 1.0000 0.8966 0.1678 0.1650 0.3101
EY5yr 1 0.1399 0.1564 0.3359
rvareq 1 0.8431 0.5943
qvareq 1 0.5376
rvarch 1

Summary Statistics

Mean 0.0179 0.0231 -0.0030 -0.0074 0.0029 0.0040 0.0002
Boot.SE ~ (0.0006) (0.0004) (0.0003) (0.0008) (0.0003) (0.0002) (0.0000)
S.D. 0.0116 0.0075 0.0061 0.0149 0.0059 0.0037 0.0003
Boot.SE  (0.0003) (0.0005) (0.0003) (0.0007) (0.0014) (0.0005) (0.0000)
Skewness -0.2322 1.7891 0.0959 -0.3495 8.1198 3.7225 4.2227
Boot.SE ~ (0.0810) (0.2515) (0.1882) (0.1502) (1.5951) (0.5123) (0.6872)
AR(1) 0.9668 0.9640 0.9822 0.9843 0.4312 0.7462 0.5775
SE (0.0137) (0.0143) (0.0083) (0.0068) (0.0488) (0.0360) (0.0441)
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Table D.2: Projecting Pure Cash Flow Uncertainty using OLS

This table presents regression results of the estimated monthly pure cash flow uncertainty (from loss
rate) on a set of monthly asset prices; some are used to span the time-varying risk aversion. The
dependent variable is Ip;, the time-varying shape parameter of the pure right-tail loss rate residual
(after controlling for macroeconomic shocks) as demonstrated in Table 2. x1073” in the header means
that the coefficients and their SEs reported are divided by 1000 for reporting convenience. “VARC”
reports the variance decomposition. Bold (italic) coefficients have <5% (10%) p-values. Robust and
efficient standard errors are shown in parentheses. Adjusted R2s are reported. The sample period is
1986,/06 to 2015/02 (345 months).

(x1073)
constant -0.001

(0.001)

Xtsprd -0.058 -2.33%
(0.011)

Xcsprd 0.202 62.69%
(0.025)

XDY5yr 0.234  41.57%
(0.046)

XEY 5yr -0.061 -22.57T%
(0.019)

Xrvareq -0.026 -3.76%
(0.062)

Xquareq 0.119 13.25%
(0.067)

Xrvarch 1.779 1367%
(0.593)

XrvarcbSPEC -0.223 —251%
(0.556)
R? 9.11%
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Figure D.1: Model-implied conditional moments of industrial production growth. The shaded
regions are NBER recession months from the NBER website.
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Figure D.2: Risk aversion/sentiment measures: A comparison.
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Macroeconomic Uncertainty (Jurado, Ludvigson & Ng, 2015), p = 0.81
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Figure D.3: Uncertainty measures: A comparison.
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