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Objective

» Propose a new approach to forecasting stock returns in the presence of
structural breaks that simultaneously affect the parameters of multiple
portfolios (and thus the market portfolio).
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Why do we care

» Stock return predictability literature focuses on ways to improve
forecasting

rr=a+bXi_1 + ¢
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Why do we care

» Stock return predictability literature focuses on ways to improve
forecasting

rr=a+bXi_1 + ¢

1. X;_1 Establishing return predictors long literature
2.b Studying parameter (in)stability ~ growing literature! <«

» Why can forecasting models be instable?

= Left-hand-side: Self-destruction after publication. For example,
McLean and Pontiff (2016) find that abnormal returns tend to
disappear after they have become public knowledge.
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» Why can forecasting models be instable?
= Left-hand-side: Self-destruction after publication. For example,
McLean and Pontiff (2016) find that abnormal returns tend to
disappear after they have become public knowledge.

= Right-hand-side: Shifts in institutions, regulations, and public policy
— shifts in the information content of the predictor variables — shifts
in predictor coefficients.
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» Why can forecasting models be instable?

= Left-hand-side: Self-destruction after publication. For example,
McLean and Pontiff (2016) find that abnormal returns tend to
disappear after they have become public knowledge.

= Right-hand-side: Shifts in institutions, regulations, and public policy
— shifts in the information content of the predictor variables — shifts
in predictor coefficients.

» Nevertheless, modeling dynamics in parameters is difficult <
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Addressing statistical challenges

» Lettau and Van Nieuwerburgh (2008) point out two challenges:

1. Slow detection of breaks in real time

» This paper addresses both concerns by:

1. Exploiting information in the cross-section of stock returns (Smith
and Timmermann (2017a))
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This Paper

Addressing statistical challenges

» Lettau and Van Nieuwerburgh (2008) point out two challenges:
1. Slow detection of breaks in real time
2. Imprecise model estimates shortly before and after breaks

» This paper addresses both concerns by:

1. Exploiting information in the cross-section of stock returns (Smith
and Timmermann (2017a))

2. Adopting a Bayesian econometric breakpoint approach (Chib (1998))
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Key identification assumption (Panel Information)

» This paper proposes estimating the breaks by pooling the information
from the cross-section.
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= The rationale: if the predictive power of a predictor on the aggregate
stock market portfolio decreases, we expect to find a similar effect on
industry portfolios at approximately the same time.
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Key identification assumption (Panel Information)
» This paper proposes estimating the breaks by pooling the information

from the cross-section.

» The timing of breaks is relatively homogenous across portfolios.

= The rationale: if the predictive power of a predictor on the aggregate
stock market portfolio decreases, we expect to find a similar effect on
industry portfolios at approximately the same time.

» Namely, pooled breaks with portfolio-specific parameters:

lit = ik + BikXe—1 + €it (1)
= Industry portfolios: i =1,.... N
= Months in Regime k: t = 741 +1,..., 7%
= Regimes: k=1,...K

= Shock assumption: £; ~ N(0,02)
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Data and estimation

v

Main predictor: lagged dividend-price ratio

v

30 industry portfolios (FF)

v

Monthly returns, 1926-2015

v

MLE + Bayesian
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Comments

Ambitious project in an important and growing research area
1. Review of main results - Time Series
2. Review of main results - Cross Section
3. Economic interpretations of the filtered breaks

4. Link to current theories
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1. Review of main results - Time Series

» Accounting for breaks in panel return models: more accurate OOS return
forecasts
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Figure: Figure 8(c) of Smith and Timmermann (2018)
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» Accounting for breaks in panel return models: more accurate OOS return
forecasts

> F%os is larger than what we normally expect (Campbell and Thompson
(2008), Goyal and Welch (2008)) for monthly prediction
= Explain better the source, is it driven by a specific break identified?
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1. Review of main results - Time Series

» Accounting for breaks in panel return models: more accurate OOS return
forecasts

> F%os is larger than what we normally expect (Campbell and Thompson
(2008), Goyal and Welch (2008)) for monthly prediction
= Explain better the source, is it driven by a specific break identified?

» Dividend-price ratio, an annual predictor (Shilller (1984), Goyal and
Welch (2003, 2008), Ang and Bekaert (2007), Golez and Koudijs, 2017)
= Do your results hold considering annual forecasting models?

—=> Ordaily
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My comments
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Figure 1: Local return predictability from the dividend yield. The top panel in this figure plots non-parametric kernel estimates of the local
slope coefficient from a regression of daily excess stock returns on the lagged dividend yield. Dashed lines represents plus or mi

bands. The bottom panel plots the local B2 measnure with s
crit!

1s two standard error

al value. The

aded areas tracking periods identified as pockets of return predictability using a 5%
chance of being spr

aded areas represent the integrated R? inside pockets with areas colored in red representing pockets that have less than a 5%

s, areas colored in orange representing pockets that have between a 5% and a 10% chance of being spurious, and areas colored
in yellow representing pockets that have more than 10% chance of being spurious

Figure: Farmer, Schmidt and Timmermann (2018, SSRN)
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2. Review of main results - Cross Section

» Break Risk = |yt - without|s Vi, t
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2. Review of main results - Cross Section

» Break Risk = |yt - without|s Vi, t

» Portfolios whose excess returns are more sensitive to breaks earn
significantly higher average returns than firms with lower break exposure
(after controlling for FF3F)

Portfolio T a
Low 0.26 -0.18
(1.98) (-2.04)

2 032 -0.06
(2.19) (-1.99)

3 044 -0.01
(2.25) (-1.60)

4 046 0.02

(1.98)  (1.01)

High 0.53 0.17
(2.58)  (2.04)

High-low  0.27 0.35
(2.18) (2.97)

Figure: Table 6 of Smith and Timmermann (2018)
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2. Review of main results - Cross Section

» Break Risk = |with - Twithout|, Vi, t

» Portfolios whose excess returns are more sensitive to breaks earn
significantly higher average returns than firms with lower break exposure
(after controlling for FF3F)

» The break risk explains part of the risk premium
= Why absolute value? There is a literature documenting that upside
and downside variance risks are differently priced; or variance risk vs.
skewness risk (e.g., Chang, Christoffersen and Jacobs, 2013, JFE)
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2. Review of main results - Cross Section

» Break Risk = |with - Twithout|, Vi, t

» Portfolios whose excess returns are more sensitive to breaks earn
significantly higher average returns than firms with lower break exposure
(after controlling for FF3F)

» The break risk explains part of the risk premium
= Why absolute value? There is a literature documenting that upside
and downside variance risks are differently priced; or variance risk vs.
skewness risk (e.g., Chang, Christoffersen and Jacobs, 2013, JFE)

» One possibility is that breaks identified here coincide with priced
economic or financial shocks
= Need more discussions on the interpretations of breaks in this paper
(e.g., thinking about the recent predictor PCA literature...)
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3. Economic interpretations of the filtered breaks

» 10 breaks

» Stronger predictability over market returns after the early seventies
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Figure: Figure 13(a) of Smith and Timmermann (2018)
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» Robustness = Multivariate predictive models? Subsamples?
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3. Economic interpretations of the filtered breaks

v

v

10 breaks

Stronger predictability over market returns after the early seventies

v

v

Robustness = Multivariate predictive models? Subsamples?

Upward trend = Conflicting with the publication / self-destruction story
earlier? See some of my findings:

Div ! Price Ratlo, Shiller (1984): Rolling Coefficients
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4. Link to theories (Missing)

» Can these interesting statistical findings provide testable hypothesis for
theoretical models?
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4. Link to theories (Missing)

v

Can these interesting statistical findings provide testable hypothesis for
theoretical models?

Extant workhorse models have difficulty generating dynamics in
predictive coefficients = However, this paper suggests that allowing
dynamics in parameters is more realistic and accurate.

rr=a-+bXi_ 1+ ¢
rn=a+bXi_1+¢

On the other hand, we can “re-scale” these variables to incorporate
non-linearity through model state variables.

= For example, long-run risk, disaster and habit formation models and
their recent variants (e.g., Kilic and Shaliastovich (2018); Wachter (2013);
Bekaert, Engstrom and Xu (2018))
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4. Link to theories (Missing)

v

Can these interesting statistical findings provide testable hypothesis for
theoretical models?

Extant workhorse models have difficulty generating dynamics in
predictive coefficients = However, this paper suggests that allowing
dynamics in parameters is more realistic and accurate.

rr=a-+bXi_ 1+ ¢
rn=a-+bXi1+e¢

On the other hand, we can “re-scale” these variables to incorporate
non-linearity through model state variables.

= For example, long-run risk, disaster and habit formation models and
their recent variants (e.g., Kilic and Shaliastovich (2018); Wachter (2013);
Bekaert, Engstrom and Xu (2018)) HARD TO DISENTANGLE...
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Conclusion

» Important question!
New angle (of identifying market-wide breaks)!
Well execution!
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My comments

Conclusion

» Important question!
New angle (of identifying market-wide breaks)!

Well execution!
» To make it more convincing:
1. Time series result: choice of horizon?
2. Cross section results: construct of “break risk”

3. Economic interpretations / Link to theories
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My comments

Thank You!

Nancy Xu (Columbi

/ Boston College)
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