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1 Introduction

Duffee (2005) documents that the amount of consumption risk (i.e., the conditional co-

variance between market returns and consumption growth) is procyclical. This finding makes

it harder to explain countercyclical equity premium. In fact, many well-accepted consumption-

based theories imply a countercyclical amount of consumption risk (e.g., Campbell and Cochrane,

1999; Bansal and Yaron, 2004; and their recent variants). Hence, I term this finding “the Duffee

Puzzle”.

In this paper, I first empirically confirm Duffee’s (2005) main findings with an addition of

13 years of data to his sample. I then find that the conditional covariance between the immediate

cash flow part of market returns (dividend growth) and consumption growth is procyclical and

a consistent source of procyclicality in the puzzle. Moreover, I propose a parsimonious and new

data generating process (DGP) for the joint dynamics of dividend and consumption growth

featuring the procyclical comovement, and explore how it affects the performance of an external

habit formation model.

In the first part of the paper, I use a dynamic conditional correlation model to identify

the cyclicalities of the amount of risk and its two conditional covariance components given the

return decomposition:

Covt
(
rmt+1,∆ct+1

)
= Covt (∆dt+1,∆ct+1)︸ ︷︷ ︸

Immediate Cash Flow

+Covt
(
rmt+1 −∆dt+1,∆ct+1

)︸ ︷︷ ︸
Valuation

, (1)

where rmt+1 is the log market return, ∆ct+1 is the log consumption growth, and ∆dt+1 is the log

dividend growth. I show that the return covariance behaves weakly procyclically, despite the

strongly countercyclical market return and consumption growth volatilities during the sample

period that now includes the 2007-08 financial crisis. I then show that the immediate cash flow

covariance behaves procyclically while the valuation covariance behaves countercyclically. The

former covariance is the only source of procyclicality in the amount of consumption risk given

the decomposition, and thus potentially solves the puzzle. This is my core empirical finding.

To further illustrate my core finding, I examine the dynamics of the proportion of the

total return covariance explained by immediate cash flow covariance. I find that this proportion

varies greatly over time and comoves positively with the business cycle. It reaches a peak at

50% during the 1960s and late 1980s expansions, while it reaches a trough at -50% at the

beginning of the 2007-08 financial crisis. Meanwhile, the unconditional proportion is 8% using

the full sample (January 1959–June 2014). The empirical part of my paper concludes with a

list of eight stylized facts pertinent to the Duffee Puzzle and its components. Six are new to

the literature. These include the new facts that consumption-dividend correlation, covariance,

beta (three comovement statistics), and dividend growth volatility are all procyclical.

In the remainder of this paper, I explore how incorporating realistic joint dynamics of con-

sumption growth and dividend growth into an endowment economy affects equilibrium stock

price dynamics, thus potentially accommodating the Duffee Puzzle. First, I formulate a new
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DGP that matches both procyclical consumption-dividend comovement and countercyclical con-

sumption growth volatility, which extant DGPs fail to do (e.g., Campbell and Cochrane, 1999;

Bansal, Kiku, and Yaron, 2012; Segal, Shaliastovich, and Yaron, 2015; Bekaert and Engstrom,

2017). In my DGP, consumption receives a “fundamental” shock and an “event” shock per

period. Fundamental shocks to consumption drive contemporaneous shocks to dividends. The

dividend shocks react more to fundamental shocks in booms (times when past consumption

growth has been high). This mechanism generates both procyclical dividend growth volatility

and a procyclical conditional covariance between consumption and dividends. In addition, the

DGP exhibits time-varying volatility of negatively skewed event shocks to consumption. This

mechanism generates countercyclical consumption growth volatility. The estimation results of

the DGP further reveal that fundamental shocks on average explain 82% of the total con-

sumption growth variability, while event shocks account for 34%–58% of the total consumption

growth variability during recessions.

Finally, I solve a variant of the Campbell and Cochrane model (henceforth, CC) that

accommodates the new DGP. An approximate analytical solution suggests that the procyclical

consumption-dividend comovement in the new DGP induces two new procyclical terms in the

amount of consumption risk: dividend risk (via cash flows) and comovement risk (via valuation).

The first term is introduced by the DGP. The second term captures how pricing is affected by

a persistent and procyclical dividend variance induced by dividends’ procyclical exposure to

the fundamental consumption shock. When a positive fundamental shock occurs in this pe-

riod, future dividends are expected to react more to future consumption shocks, driving up the

expected dividend growth variance. This variance becomes capitalized in stock prices, leading

stock prices to react more positively to consumption shocks during booms than during reces-

sions. The numerical solution further shows that, without procyclical consumption-dividend

comovement, a CC model with countercyclical risk aversion and macroeconomic uncertainty

tends to generate an amount of consumption risk that is too high. My model generates more

realistic magnitudes of consumption risk during both recession and non-recession periods.

The equity premium in my model can be expressed as the product of a countercyclical

price of risk (which is consistent with CC) and a time-varying amount of risk that comprises

both procyclical (which is new) and countercyclical terms. These terms reveal countervailing

effects on the magnitude of both conditional and unconditional equity premiums. The model

implies a conditional equity premium that no longer increases monotonically when consumption

drops. This is because a negative fundamental consumption shock results in both higher risk

aversion and lower procyclical terms in the amount of risk. In addition, the model generates a

lower unconditional equity premium. This is because stock prices here incorporate procyclical

risks, rendering the market asset less risky. The numerical solution confirms this theoretical

prediction, which also yields a more realistic Sharpe Ratio.

It is noteworthy that Duffee (2005) relates this procyclical amount of consumption risk to

a “composition effect”: The agent’s consumption growth is more correlated with stock returns

when financial wealth and asset prices are high. Although my model does not explicitly involve
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modeling wealth and other capital, it does rationalize a positive relationship between procyclical

consumption-dividend comovement and equity valuation ratios in equilibrium. The estimation

results of the DGP show a significant and negative correlation between consumption-dividend

comovement and the well-known cay variable from Lettau and Ludvigson (2001). Therefore,

both explanations are potentially consistent.

The outline of this paper is as follows. Section 2 replicates the main empirical finding

in Duffee (2005) and examines the cyclicalities of the immediate cash flow and valuation co-

variances. Section 3 formulates and estimates the new DGP. Section 4 analyzes a variant of

Campbell and Cochrane’s habit formation model that potentially accommodates the Duffee

Puzzle. Concluding comments are offered in Section 5.

2 The Duffee Puzzle Revisited, Econometrically

The decomposition of the amount of consumption risk, as shown in Equation (1), yields an

immediate cash flow conditional covariance, Covt (∆dt+1,∆ct+1), and a valuation conditional

covariance, Covt
(
rmt+1 −∆dt+1,∆ct+1

)
. In this section, I exploit a bivariate dynamic depen-

dence model in the GARCH class to replicate the Duffee Puzzle and identify the cyclicalities of

the two conditional comovements that constitute the puzzle.

2.1 The Dynamic Dependence Model

The empirical analysis uses four variables: log consumption growth ∆ct+1, log market

returns rmt+1, log dividend growth ∆dt+1, and their difference, rmt+1−∆dt+1. I first project each

series onto an exogenous business cycle indicator (1=recession, 0=non-recession) to obtain the

series residuals denoted by ε̃. Consider a bivariate system,

ε̃t+1 ≡
[
ε̃1,t+1 ε̃2,t+1

]′
, (2)

where, in this paper, ε̃1,t+1 is the consumption growth residual and ε̃2,t+1 could be the market

return residual, the dividend growth residual, or the valuation residual.

I follow Engle (2002) and express the conditional variance-covariance matrix of the resid-

uals, Ht ≡ Et
[
ε̃t+1ε̃

′
t+1

]
, in a quadratic form,

Ht = ΛtCorrtΛt. (3)

The diagonal terms of Λt (2 × 2) are the square roots of the conditional variances of ε̃1,t+1 and

ε̃2,t+1, and the off-diagonal terms of Λt are zeros; Corrt (2 × 2) is the conditional correlation

matrix. Under quasi likelihood assumptions (Bollerslev and Wooldridge, 1992; White, 1996),

the log-likelihood of this dynamic dependence model can be written as the sum of a volatility

term and a correlation term. As a result, the model can be estimated by maximizing each term

separately.
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2.1.1 Conditional Variance

The empirical literature contains robust evidence that innovations of consumption growth

and market returns are heteroskedastic (e.g., Bollerslev, Engle, and Wooldridge, 1988; Kandel

and Stambaugh, 1990; Lettau, Ludvidgon, and Wachter, 2008; among many others) and non-

Gaussian (e.g., Nelson, 1991; Glosten, Jagannathan, and Runkle, 1993; Bekaert and Engstrom,

2017; among many others). However, there is scant research on the behavior of dividend growth

conditional variance. Therefore, to capture realistic dynamics of condition variances, I consider

several representative GARCH-class models for each residual series.

Denote ht as the conditional variance at the information set t. The first model assumes

that the residuals follow a conditional Gaussian distribution, ε̃t+1 ∼ N(0, ht), and the condi-

tional variance ht is a two-state process,

ht = h (1 + qt) , (4)

qt = νSNBERt, (5)

where h denotes the predetermined unconditional variance; the process of qt is a multiple of the

standardized NBER recession indicator, denoted as SNBERt, so that the average conditional

variance E(ht) is h; and ν is an unknown parameter. The zero-mean cyclical component qt

identifies the cyclicality within the model: a positive (negative) coefficient estimate of ν indicates

a countercyclical (procyclical) conditional variance; a zero estimate fails to reject the null of an

acyclical variance.1

The second and third conditional variance models introduce this cyclical component into a

generalized autoregressive conditional heteroskedastic process as its long-run mean “h (1 + qt)”:

ht = h (1 + qt) + α
[
ε̃2t − h (1 + qt−1)

]
+ β

[
ht−1 − h (1 + qt−1)

]
, (6)

where α + β < 1, α > 0, β > 0; qt is modeled as in Equation (5). The second model assumes

a conditional Gaussian distribution, while the third model assumes a symmetric leptokurtic

conditional generalized error distribution (GED). The GARCH model (Bollerslev, 1987) and

the GED-GARCH model (Nelson, 1991) are their special cases with ν = 0, respectively.

The fourth model allows for asymmetries in both conditional variance and distributional

assumptions. I use the “Bad Environment-Good Environment” (BEGE) model from Bekaert,

Engstrom, and Ermolov (2015). The residual follows a composite distribution of two centered

gamma shocks that independently govern left- and right-tail behaviors. For simplicity, I assume

that most heteroskedasticity comes from the left tail. The mathematical expression of the

composite residual is ε̃t+1 = σcpω̃cp,t+1−σcnω̃cn,t+1, where ω̃cp,t+1 ∼ Γ̃(cp, 1), ω̃cn,t+1 ∼ Γ̃(cnt, 1),

shape parameters cp > 0 and cnt > 0, and scale parameters σcp > 0 and σcn > 0. Given the

distributional assumption, the total conditional variance is ht = σ2
cpcp + σ2

cncnt. The left-tail

shape parameter cnt has isomorphic GARCH-class dynamics with a cyclical long-run mean

1This instrument approach is popular in empirical studies (e.g., Campbell, 1987; Shanken, 1990; Bekaert and
Harvey, 1995; Duffee, 2005; among many others).
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“cn (1 + qt)”:

cnt = cn (1 + qt) + αcn

[
ε̃2t

2σ2
cn

− cn (1 + qt−1)

]
+ βcn [cnt−1 − cn (1 + qt−1)] , (7)

where αcn +βcn < 1, αcn > 0, βcn > 0; cn is now an unknown parameter because it depends on

the value of σcn; qt is modeled similarly.

2.1.2 Conditional Correlation

Denote two standardized residuals by zt+1 ≡
[
z1,t+1 z2,t+1

]′
= Λ−1

t ε̃t+1. To simul-

taneously test the cyclicality of time-varying correlation, my model builds a cyclical long-run

component into the dynamic conditional correlation process:

Qt = Q12

[
1 1 + qt

1 + qt 1

]
+ α12

[
ztz
′
t −Q12

[
1 1 + qt−1

1 + qt−1 1

]]

+ β12

[
Qt−1 −Q12

[
1 1 + qt−1

1 + qt−1 1

]]
, (8)

where the parameter Q12 denotes the predetermined constant correlation of the standardized

residuals. As introduced before, qt = νSNBERt. I call it the “DCC-qt” model in this paper. It

is noteworthy that Engle (2002) assumes a constant long-run mean, or a “ν = 0” special case.

Meanwhile, Colacito, Engle, and Ghysels (2011) use a weighted average of past correlations to

model the long-run conditional mean. Unlike these DCC models, this DCC-qt model aims to link

time-varying correlation to the business cycle through the new cyclical long-run component.2

2.2 Data

I follow Duffee (2005) to use monthly data indexed with t. Monthly real consumption is

defined as the sum of seasonally adjusted real aggregate expenditures on nondurable goods and

services (source: U.S. Bureau of Economic Analysis, BEA). The deflators for aggregate non-

durable and services consumption are different (source: BEA). Monthly dividends are measured

by the real 12-month trailing dividends of the “NYSE/AMEX/NASDAQ” universe (source:

Center for Research in Security Prices, CRSP) allowing for reinvestment at the gross risk free

rates (source: CRSP). Inflation is calculated using the CPI (source: Federal Reserve Economic

Data, FRED). Monthly consumption (dividend) growth is defined as log-differenced real con-

sumption (dividend) per capita. The monthly population is obtained from the BEA. Monthly

real market returns are the log value-weighted market return including dividends (source: CRSP,

“NYSE/AMEX/NASDAQ”), minus inflation.3 The sample spans the period between January

2In earlier versions, I use other macro-finance variables to approximate business conditions, including output
growth, unemployment rate, and changes in the yield spread. In this version, I use the NBER recession indicator
due to (1) simplicity and (2) consistency with the theoretical model that I show later.

3In earlier versions, I use Robert Shiller’s monthly aggregate real 12-month trailing dividend data to conduct
all the analyses in this research. Main results are robust. Tables, data, and codes are available upon request.
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1959 and June 2014.

It is well-known that measured aggregate consumption data are flow data which are

reported as total consumption over an extended period. This temporal aggregation results in a

non-zero autoregressive coefficient of aggregate consumption growth (Working, 1960) even if the

true consumption growth is i.i.d. The temporal aggregation effect could also potentially induce

biases in the estimated conditional covariances, as thoroughly discussed in Duffee (2005, pp.

1691-1694). Therefore, I follow the literature and construct a measure of monthly consumption

growth that removes the autoregressive terms up to the third order, ∆ct+1−
∑3

1 φi(∆ct+1−i−c)
where φi is the ith-order autoregressive coefficient and c is the sample mean. For the rest of this

paper, “consumption growth” refers to this measure that controls for temporal aggregation.

The present research uses observed dividend data to identify stylized facts (this section)

and provide exact data point estimates to be matched by a more general economic model (later).

As a result, a one-time dividend event—unique and anticipated never to recur—should be

excluded from the analysis because such an event is not drawn from the distribution relevant to

current and future prices. In my sample period, I identify two extremely large dividend payments

that significantly inflated dividend growth volatility and are considered unrepresentative: (1)

The Microsoft special dividend payment in November 2004, and (2) the expiration of the Jobs

and Growth Tax Relief Reconciliation Act of 2003 (known as the “The Bush Tax Cuts”) on

December 31, 2012 which incentivized a special dividend uptick during Q4 of 2012. I provide

two observations that support the identification. First, while the 99th percentile of the real

12-month trailing dividend growth distribution is 3%, monthly dividend growth rates during

November 2004 and December 2012 are 13% and 7%, respectively. Second, due to the 12-month

trailing calculation, these two events result in the two lowest monthly dividend growth rates 12

months later, -7% in November 2005 and -4% in December 2013. Meanwhile, the 1st percentile

of the distribution is -2.5%. To treat these two events, I linearly interpolate the corresponding

CRSP-implied dividend data points using values before and after, prior to the 12-month trailing

calculation.

2.3 Estimation and Results

The first step applies the maximum likelihood estimation (MLE) methodology to estimate

the conditional variance models for each variable and selects the best model based on goodness

of fit criteria. A detailed model selection analysis and parameter estimates are in the Internet

Appendix. Using the standardized residuals obtained from the first step, the second step applies

the quasi-maximum likelihood asymptotic theory to estimate the conditional correlation models.

This section discusses the estimation results, with a focus on the cyclicalities of relevant second

and cross moments pertinent to the Duffee Puzzle.

2.3.1 Conditional Variance Models

As shown in the Internet Appendix, the best univariate model of consumption growth

variance is GED-GARCH with a countercyclical long-run mean qt. The BEGE model with a
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strongly countercyclical long-run mean fits the market return variance the best, suggesting that

market return innovations are more asymmetric than consumption growth innovations. The

conditional variances of market return components exhibit different cyclical behaviors. On the

one hand, the conditional variance of dividend growth is found to have a weakly procyclical

long-run mean, as qt appears to comove negatively with the NBER recession indicator. The

best univariate model of dividend growth variance is GED-GARCH. On the other hand, there is

strong evidence for countercyclical conditional variance of the valuation part of market returns.

2.3.2 Conditional Correlation Models and The Duffee Puzzle

I discuss two tables next. Table 1 reports the estimation results of the original DCC model

and a cyclical DCC model (DCC-qt). Table 2 reports the regression coefficients of conditional

moments on a business cycle indicator.

Table 1 first shows evidence of a procyclical long-run mean in the consumption-return

conditional correlation, given the significant and negative cyclicality coefficient estimate (ν=-

0.1123, SE=0.0339). In terms of economic magnitudes, the consumption-return conditional

correlation increases to around 0.1628 during non-recession periods and around 0.1124 during

recession periods. The Likelihood Ratio (LR) test shows that the cyclical DCC model outper-

forms the original DCC model (p-value=0.0037).

Together with the conditional variance estimates of consumption growth and market re-

turns, the consumption-return covariance estimates appear weakly procyclical, confirming the

Duffee Puzzle. Using various business cycle indicators, the regression coefficient on consumption

growth (consistent with asset pricing models) is 0.2963×10−3 (SE=0.1090×10−3) and that on

the NBER recession indicator is -0.0092×10−5 (SE=0.1019×10−5). As expected, the procycli-

cality of the market return covariance is weaker than the procyclicality of the market return

correlation because both market return and consumption growth volatilities are strongly coun-

tercyclical (see the first panel of Table 2). As robustness check, when GARCH estimates are

used for both consumption and return conditional variances (as used in Duffee, 2005), the re-

gression coefficient on consumption growth is 0.3201×10−3 (SE=0.1288×10−3) and that on the

NBER recession indicator is -0.1802×10−5 (SE=0.1201×10−5).

Next, I provide empirical evidence for the source(s) of procyclicality in the Duffee Puz-

zle. When estimating the conditional correlation between dividend growth and consumption

growth, the LR test rejects the DCC model in favor of the DCC-qt model (p-value=0.0008;

see the middle block of Table 1). The cyclicality coefficient estimate is significant and nega-

tive (ν=-0.1925, SE=0.1052), suggesting a procyclical consumption-dividend correlation. The

average conditional correlation is 0.0049 during during recession periods and 0.0131 during

non-recession periods.4 Moreover, the consumption-dividend correlation, covariance, and the

4At the monthly frequency, the unconditional correlation of consumption and dividend growth is 0.0569
using the raw data, 0.0242 using de-centered residuals, and 0.0121 using de-centered standardized residuals. The
quarterly unconditional correlation between consumption and dividend growth (calculated as the sum of monthly
growth rates within the same quarter) is 0.1568. In an earlier version of the paper, I use Shiller’s monthly dividend
data. One can replicate his data in two steps: (1) obtain the 12-month trailing CRSP-implied dividend levels
at the quarterly frequency, then (2) calculate dividends for other months using linear interpolation, e.g., April
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sensitivity of dividend growth to consumption growth (“beta”) all appear to be procyclical.

As shown in Table 2, the regression coefficients on the NBER recession indicator “b(INBER,t)”

are -0.0082 (SE=0.0044), -0.0317×10−5 (SE=0.0173×10−5), and -0.0342 (SE=0.0209), respec-

tively. In particular, a procyclical beta indicates that changes in aggregate dividend payments

are more positively sensitive to contemporaneous consumption shocks during booms than dur-

ing recessions. Table 2 also provides formal evidence for procyclical dividend growth volatility

(b(INBER,t)=-0.0009, SE=0.0003). All of the four procyclicality findings above—correlation,

covariance, beta, and dividend volatility—are new to the literature.

As for the cyclical behavior of the valuation part of the puzzle, Table 2 suggests that the

valuation covariance behaves countercyclically (b(INBER,t)=0.2276×10−5, SE=0.1107×10−5).

Instead of directly estimating the valuation covariance, one can also use the difference between

the market return covariance estimates and the immediate cash flow covariance estimates. The

countercyclicality result is robust to different estimates of valuation covariance, and both direct

and indirect estimates are highly correlated (0.950 at the monthly frequency and 0.984 at the

quarterly frequency). In addition, although the valuation conditional correlation is shown to be

procyclical, countercyclical volatilities of consumption growth and the valuation part of market

returns clearly dampen the procyclical valuation correlation.

In summary, I provide supportive evidence for the Duffee Puzzle—even after accounting

for more sophisticated conditional variance models and adding 13 more years of data that now

includes the 2007-08 financial crisis. Moreover, I have shown that the conditional covariance

between dividend growth and consumption growth is a unique and consistent source of procycli-

cality in the puzzle, given the current return decomposition. This is the main empirical finding

of the paper.

2.3.3 Time Series

Figure 1 depicts the decomposition of the market return covariance in the top plot, and

the time-varying proportion of the immediate cash flow covariance in the bottom plot. The

immediate cash flow covariance (solid blue line) has a statistically significant and negative

correlation with the NBER recession indicator at -0.08 (SE=0.04). This covariance is smaller

in magnitude and appears less persistent. The largest positive spike appeared in April 1984,

coinciding with the largest drop in the monthly real consumption growth (-12.9 annualized

percents5) and a large consumption-dividend correlation (0.25). The largest negative spike in

this covariance appeared in December 1984 due to the continuing high consumption growth

volatility and a small negative correlation. As robustness check, excluding year-months of 1984

= 2
3
March + 1

3
June and May = 1

3
March + 2

3
June, and so on. Due to this linear interpolation methodology,

Shiller’s monthly dividend growth series (essentially capturing information at the quarterly frequency) has a
0.18 correlation with the monthly consumption growth. Hence, his monthly dividend data is not suitable in the
present research due to the overly smoothed monthly dividend growth.

5In early 1984, the nominal non-durable consumption level dropped significantly while its price index in-
creased, which together resulted in the largest drop in real consumption growth during the sample period and a
large increase in the consumption volatility. The Internet Appendix reports the time series plots of conditional
volatilities of consumption growth and dividend growth.
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and 1985 does not change the cyclicality result of the immediate cash flow covariance: The

regression coefficient on the NBER recession indicator is -0.0302×10−5 (SE=0.0155×10−5), and

their correlation remains significant and negative at -0.08.

On the other hand, the difference between the market return covariance and the immediate

cash flow covariance (dashed red line) exhibits an overall countercyclical pattern, which is

consistent with the evidence from Table 2. This covariance is more persistent with several

salient spikes. For instance, the spike around 1987 in a generally decreasing trend corresponds

to the Stock Market Black Monday in October 1987 that caused extreme price movements.6

One interesting implication of these findings is that the proportion of the immediate cash

flow covariance in the Duffee Puzzle varies greatly over time. The market return covariance

estimates drop below zero briefly during the 1960 recession (see Figure 2). This mechanically

results in an extremely volatile cash flow proportion with abnormal values. As a result, I

focus on the sample period from 1962 to 2014 in this paragraph. According to the bottom

plot of Figure 1, the proportion is procyclical with an NBER regression coefficient of -0.0337

(SE=0.0124). This result provides supportive evidence for the core finding of the paper (i.e.,

consumption-dividend comovement is a consistent source of procyclicality in the Duffee Puzzle;

see Section 2.3.2).

As for the magnitude of the proportion, the immediate cash flow covariance explains, on

average, 5.00% of the total market covariance from 1962 to 2014. In particular, the proportion

drops to 0% (even slightly negative) during recession periods, which is significantly lower than

the 5.47% during non-recession periods (t stats=-2.72). It reached as high as 52.47% in the

late 1980s, 50.60% in 2009 and 41.58% in the 2013 expansion, while it dipped below -50%

consecutively during the first two months of 2007-08 recession. The unconditional proportion

calculated using unconditional covariances is 7.89% using this subsample and 8.62 using the full

sample.

2.4 Summary

Below, I summarize the cyclicalities of eight relevant second and cross moments estab-

lished in this section:

(a). The conditional variance of ∆c is countercyclical. Kandel & Stambaugh (1990)

(b). The conditional variance of ∆d is procyclical. New

(c). The conditional correlation between ∆c and ∆d is procyclical. New

(d). The conditional covariance between ∆c and ∆d is procyclical. New

(e). The conditional sensitivity (beta) of ∆d to ∆c is procyclical. New

(f). The conditional variance of rm −∆d is countercyclical. New

(g). The conditional variance of rm is countercyclical. Schwert (1989)

(h). The conditional covariance between ∆c and rm −∆d is countercyclical. New

6Figure IA2 of the Internet Appendix presents the same plot but using the direct valuation covariance esti-
mates, Covt(r

m
t+1 − ∆dt+1,∆ct+1). Both measures of valuation covariance are highly correlated as mentioned

above (monthly: 0.950; quarterly: 0.984), and main time series properties remain the same.
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3 A New DGP for the Joint Consumption-Dividend Dynamics

Extant consumption-based asset pricing theories do not typically discuss whether the

modeling choice of aggregate dividends is realistic or not. In a Lucas tree economy (Lucas, 1978),

dividends equal consumption, but the literature mostly models them as unit root processes with

constant correlations.7 Table 3 summarizes seven consumption-based asset pricing models and

their abilities to match the empirical facts established in Section 2. Using suggested parameter

choices, DGPs of these models fail to generate realistic dynamics of consumption-dividend

comovement and dividend variance. Furthermore, these models imply either a countercyclical

or zero market return covariance, which contradicts the Duffee Puzzle.

This section presents a new DGP that has the potential to accommodate Facts (a)–(e)

into a consumption-based asset pricing model with a minimum number of state variables. To

enhance the plausibility of the new DGP, I then discuss the economic interpretations of the state

variables and shocks given the estimation results. In Appendix A, I discuss why alternative

modeling approaches may be less suited to fit the salient empirical facts.

3.1 The DGP

The consumption growth, ∆ct+1, is assumed with a constant mean c and a composite

shock structure:

∆ct+1 = c+ σcω̃c,t+1 + σnω̃n,t+1, (9)

ω̃c,t+1 ∼ N(0, 1),

ω̃n,t+1 ∼ Γ(nt, 1)− nt.

The “fundamental” consumption shock, ω̃c,t+1, is a Gaussian shock with unit standard devia-

tion; σc > 0 is a scale parameter. The “event” consumption shock, ω̃n,t+1, follows a centered,

positively-skewed, and heteroskedastic gamma distribution with a strictly positive shape param-

eter nt. To model negative skewness in consumption growth, scale parameter σn is negative.

Given the moment generating functions of Gaussian and gamma shocks, the conditional variance

of ∆ct+1, denoted as Vc,t, is driven by nt: Vc,t = σ2
c +σ2

nnt. As a result, nt is the macroeconomic

uncertainty state variable in this DGP.

The dividend growth, ∆dt+1, has the following process:

∆dt+1 = d+ φd
(
Vc,t − V c

)
+ btσcω̃c,t+1 + σdω̃d,t+1, (10)

ω̃d,t+1 ∼ Γ(Vd, 1)− Vd.

The expected dividend growth has a constant part (d), and a time-varying part that decreases

with macroeconomic uncertainty (φd < 0); V c denotes the mean of Vc,t. State variable bt

7For example, Campbell and Cochrane (1999) assume constant comovement and variances. Bansal and Yaron
(2004) assume a zero consumption-dividend conditional comovement given their shock assumption. Bansal, Kiku,
and Yaron (2012) allow the dividend growth innovations to have a constant exposure to the consumption shock.
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captures the time-varying sensitivity of dividend growth to consumption growth. The dividend-

specific shock, ω̃d,t+1, follows a centered, positively-skewed, and homoskedastic gamma distri-

bution with a strictly positive shape parameter Vd. Scale parameter σd determines the sign of

the dividend growth skewness.

The three shocks are mutually independent. ∆ct+1 and ∆dt+1 are observables. The two

latent state variables, nt and bt, follow autoregressive processes that have positive exposures to

the event and fundamental shocks, respectively (φn, φb, σnn, λb > 0):

nt+1 = (1− φn)n+ φnnt + σnnω̃n,t+1, (11)

bt+1 = (1− φb)b+ φbbt + λbσcω̃c,t+1. (12)

The key reason for this DGP to imply both countercyclical consumption growth variance

and procyclical dividend growth variance and comovement is the flexible use of the two consump-

tion shocks. The DGP exhibits time-varying volatility of consumption growth through event

consumption shocks. Meanwhile, dividends react more to fundamental consumption shocks in

booms (times when past consumption growth has been high). The cyclicalities of the two state

variables can be proved:

� Fact Check (a): nt+1 is countercyclical, given Covt(∆ct+1, nt+1) = σnσnnnt < 0.

� Fact Check (e): bt+1 is procyclical, given Covt(∆ct+1, bt+1) = λbσ
2
c > 0.

It follows that the new DGP generates strictly procyclical consumption-dividend comove-

ment and procyclical dividend growth variance:

� Fact Check (b): the conditional variance of dividend growth, b2tσ
2
c + σ2

dVd, is procyclical

if bt >
(φb−1)b̄
φb

. (Note: (φb−1)b̄
φb

< 0)

� Fact Check (c): the conditional correlation between dividend and consumption growth,
btσ2

c√
σ2
c+σ2

dnt
√
b2tσ

2
c+σ2

dVd
, is procyclical given a countercyclical nt and a procyclical bt.

� Fact Check (d): the conditional covariance between dividend and consumption growth,

btσ
2
c , is procyclical.

3.2 DGP Estimation Results

Given that there is no feedback from the cash flow process to consumption, I estimate the

consumption growth system {∆c, n} and the dividend growth system {∆d, b} in two separate

steps using MLE-based methodologies. Appendix B details the estimation procedure.

The estimation results in Table 4 confirm that the new DGP matches Facts (a)–(e). Con-

firming Fact (a), Panel A shows that consumption growth depends negatively on the positively-

skewed heteroskedastic event shock (σn=-0.0023, SE=0.0005), while the macroeconomic uncer-

tainty state variable nt has a positive exposure to the event shock (σnn=0.2772, SE=0.1027).

Panel B then confirms Fact (e) that this new comovement state variable bt is procyclical, as

bt loads significantly and positively on the fundamental shock (λb=59.9163, SE=5.4008). To
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provide direct evidence for these two facts, the regression coefficients of nt and bt on the NBER

recession indicator are 0.5926 (SE=0.0354) and -0.1240 (SE=0.0190), respectively, as shown

in Table 4. Similarly, confirming Facts (b)–(d), the DGP-implied dividend growth conditional

variance, consumption-dividend conditional correlation, and consumption-dividend conditional

covariance are procyclical given significant and negative NBER loadings.8

Figure 3 depicts the time series of the estimated DGP state variables: macroeconomic

uncertainty nt (top) and consumption-dividend comovement bt (bottom). The monthly esti-

mates of nt exhibit a persistent process that occasionally spikes, mostly during recessions. Its

countercyclical nature determines the countercyclicality of the consumption growth variance,

σ2
c + σ2

nnt. While σ2
c contributed by the fundamental shock explains on average 82% of the

total consumption growth variance, σ2
nnt contributed by the event shock could explain as high

as 34%–58% during recessions. On the other hand, as shown in the bottom plot of Figure 3,

the consumption-dividend comovement state variable bt is a less persistent process, which is

consistent with observations from the empirical model in Section 2. The monthly bt estimates

have a significant and negative correlation of -0.25 with the NBER recession indicator.

3.3 Economic Interpretation of Consumption Shocks

The consumption shock structure plays an indispensable role in enabling the DGP to

simultaneously satisfy Facts (a)–(e). In the following section, I motivate the economic interpre-

tations of the two consumption shocks.

First, Table 5 documents that the filtered fundamental consumption shock ω̃c is procycli-

cal, given its significant and negative correlation with the NBER recession indicator at various

frequencies (monthly: -0.18; quarterly: -0.27). The fundamental shock also comoves signifi-

cantly and negatively with the detrended quarterly consumption-wealth ratio ĉay from Lettau

and Ludvigson (2001), which is consistent with the DGP. In this DGP, a unit fundamental

shock at time t increases bt and will have persistent and positive effects on the expected future

consumption-dividend comovement and dividend variance. This variance becomes capitalized

in financial wealth, inducing a higher asset price. The top plot of Figure 4 illustrates the neg-

ative relationship between the filtered fundamental shock ω̃c (solid line) and ĉay (dashed line)

at the quarterly frequency. In addition, negative spikes in ω̃c often appear during the NBER

recessions. To increase the confidence about the shock assumption, Panel A of Table 5 shows

that the filtered fundamental shock cannot be rejected by the standardized Gaussian shock

assumption.

Second, as shown in the bottom plot of Figure 4, major positive spikes of the filtered event

consumption shock ω̃n occur during recessions. Because consumption growth loads negatively on

the event shock (σn=-0.0023, SE=0.0005), these spikes reflect extreme negative consumption

growth events. Table 5 formally confirms the countercyclicality of ω̃n, as evidenced by its

correlation of 0.13 (0.25) with the monthly (quarterly) NBER recession indicator. In addition,

8Implied dividend growth volatility: b(INBER,t)=-4.35×10−6, SE=2.59×10−6; implied covariance:
b(INBER,t)=-1.03×10−6, SE=1.59×10−7; implied correlation: b(INBER,t)=-0.028, SE=0.004.
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variable ĉay appears uncorrelated with the filtered event shock ω̃n and dividend-specific shock

ω̃d. This result in turn supports the possibly close economic relationship between ĉay and the

fundamental shock, as discussed above.

It is noteworthy that several recent models in the consumption-based asset pricing liter-

ature have attempted to model consumption growth disturbance with two independent shocks.

The continuous-time model in Longstaff and Piazzesi (2004) models the consumption growth

innovation with a Brownian motion and a jump process which are conceptually similar to the

Gaussian fundamental shock and the gamma event shock in my DGP. Closer to my model,

the DGP in Bekaert and Engstrom (2017) features two independent heteroskedastic gamma

shocks, one associated with the “good” volatility and the other with “bad” volatility. In a

similar vein, Segal, Shaliastovich, and Yaron (2015) explore good and bad shocks in a long-run

risk framework. However, none of these models accommodate realistic consumption-dividend

comovement.

4 An External Habit Model

The theoretical model in this section explores how incorporating realistic joint dynamics

of consumption growth and dividend growth into an endowment economy affects equilibrium

stock price dynamics, thus potentially accommodating the Duffee Puzzle. Between the two

puzzle components, the procyclical cash flow conditional covariance is immediately satisfied

given the new DGP. However, different consumption-based asset pricing paradigms have dif-

ferent implications for the cyclicality of the valuation component of the puzzle. In particular,

the external habit formation paradigm is suitable to structurally examine the Duffee Puzzle

for the following reasons. First, Campbell and Cochrane (1999; CC) already naturally entails

a countercyclical valuation covariance through risk aversion: The effect of consumption shocks

on the equity valuation ratio is amplified when risk aversion is higher. Second, as I show later,

an endowment economy with procyclical dividend risk requires a countercyclical price of risk to

generate procyclical equity prices. Third, this paradigm implies an equity premium that equals

the product of time-varying price of risk and amount of risk, which is consistent with Duffee’s

(2005) original theoretical motivation for studying market return covariance.

Section 4.1 introduces the model. Section 4.2 derives (approximate) analytical model

solution and implications. Section 4.3 confronts the numerical model solution with a wide

range of empirical moments, featuring the eight stylized facts related to the Duffee Puzzle.

4.1 Pricing Kernel, Risk Free Rate, Sensitivity Function

I obtain the log real pricing kernel using the external habit preference as in the CC model:

mt+1 = lnβ − γ∆ct+1 − γ∆st+1. (13)
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The log surplus consumption dynamics incorporates the new consumption growth innovation,

st+1 = (1− φs)st + φsst + λt (σcω̃c,t+1 + σnω̃n,t+1) , (14)

where φs is the persistence coefficient, st the time-varying long-run mean, and λt the sensitivity

function.

The real risk free rate, rft, is solved from the first-order condition for the consumption-

saving choice, rft = lnEt[exp(mt+1)]−1. Given the moment generating functions of the two

independent shocks in the pricing kernel (ω̃c,t+1, ω̃n,t+1), the risk free rate has an exact closed-

form solution,

rft = − lnβ + γc+γ(1− φs)(st − st)︸ ︷︷ ︸
intertemporal
substitution

−1

2
γ2(1 + λt)

2σ2
c − [γ(1 + λt)σn − ln (1 + γ(1 + λt)σn)]nt︸ ︷︷ ︸

precautionary savings

.

(15)

As in the CC model, the intertemporal substitution effect and the precautionary savings

effect counteract in determining the time variation in the risk free rate. The literature has

proposed various modeling choices of the sensitivity function.9 The present model proposes

a strictly procyclical real rate, which is consistent with the few empirical findings such as

Ang, Bekaert, and Wei (2008). Specifically, λt is chosen such that the second-order Taylor

approximation of the risk free rate is a constant as in the CC model:

λt =

{
1
St

√
1− 2(st − st)− 1, st ≤ smax,t

0, st > smax,t
(16)

where st = log(St) and smax,t are derived as functions of the free parameters and nt,

St =

√
(σ2
c + σ2

nnt)
γ

1− φs
, (17)

smax,t = st +
1

2
(1− S2

t ). (18)

St and smax,t are time-varying equivalent to those in the CC model. The dynamics of the

sensitivity function are determined by st and nt. As in the CC model, when the consumption

level is closer to the habit level, or lower st, the sensitivity function increases. On the other

hand, the uncertainty state variable nt has a negative effect on λt through 1
St

and a positive

effect through st.

With this sensitivity function, the precautionary savings channel in the risk free rate

contains a higher-order moment, which is different from the CC model. For instance, a third-

9For instance, in the CC model, the two effects offset each other, resulting in a constant risk free rate. Wachter
(2005, 2006) allow the intertemporal substitution effect to dominate in order to generate an upward sloping real
yield curve, thus resulting in a countercyclical short rate. Bekaert and Engstrom (2017) proposed a time-varying
risk free rate such that the relative importance of the two effects varies over time, depending on the magnitudes
of their good and bad uncertainty state variables.
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order Taylor approximation of the risk free rate is given by:

rft ≈ − lnβ + γc− (1− φs)γ
2︸ ︷︷ ︸

≡rfCC

+
1

3
γ3(1 + λt)

3 σ3
n︸︷︷︸

<0

nt. (19)

rfCC denotes the constant risk free rate as in the CC model (which assumes only Gaussian

shocks). The appended precautionary savings term, 1
3γ

3(1 + λt)
3σ3
nnt, is strictly procyclical

given σn < 0. It captures that, under extreme and bad economic environment, the desire to

save might eventually dominate the intertemporal substitution effect, resulting in a lower rate.

Appendix C provides the derivations and graphical demonstrations of the sensitivity function.

4.2 Approximate Analytical Solution

This model features three state variables: the procyclical log surplus consumption ratio

(st), the countercyclical macroeconomic uncertainty (nt), and the procyclical consumption-

dividend comovement (bt).
10 The model does not have an exact closed-form solution. In this

section, I explore economic intuitions based on an approximate analytical solution.

4.2.1 Equity Prices

I conjecture an approximate process for the log valuation ratio pdt ≡ ln
(
Pt
Dt

)
:

pdt = A0 +A1st +A2bt +A3b
2
t +A4nt. (20)

Then, I apply the Campbell–Shiller linearization to the log market return, rmt+1 = ln
(
Pt+1+Dt+1

Pt

)
≈

∆dt+1 + a1pdt+1 − pdt + a0 where a0 and a1 are linearization constants. Given the shock as-

sumptions and the pd conjecture, there are three types of shocks in this approximate log market

return: Gaussian shocks, χ2(1) shocks, and gamma shocks. I then apply a quasi quadratic

Taylor approximation to the Euler equation. Et
[
exp(mt+1 + rmt+1)

]
can be shown to have the

following expression, exp
[
Et(mt+1 + rmt+1) + 1

2Vt(mt+1 + rmt+1)
]
; see Appendix D for the proof.

The coefficients in the conjectured log valuation ratio are solved in closed form by equating the

terms of the state variables; see Appendix E for the technical details and proofs.

I focus on the asset pricing implications of the procyclical comovement state variable

introduced in this paper, bt. Through a pure cash flow (CF) effectl, the valuation ratio can be

interpreted as reflecting the outlook on future dividend growth, given that the expected value

of the exponential of dividend growth increases with both the expected growth and conditional

variance.11 In this model, the persistent procyclical consumption-dividend comovement induces

10The cyclicality of each state variable can be easily proved. Log surplus consumption ratio is procyclical
because Covt(st+1,∆ct+1) = λt(σ

2
c + σ2

nnt) > 0. As discussed in Section 3, macroeconomic uncertainty is
countercyclical because Covt(nt+1,∆ct+1) = σnσnnnt < 0, and consumption-dividend comovement is procyclical
because Covt(bt+1,∆ct+1) = λbσ

2
c > 0.

11The Gaussian analogue is, Et [exp(∆dt+1)] = exp
[
Et(∆dt+1) + 1

2
Vt(∆dt+1)

]
, where Et(∆dt+1) is d̄+φd(Vc,t−

V ) and 1
2
Vt(∆dt+1) is 1

2
(b2tσ

2
c + σ2

d).
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a persistent procyclical dividend growth variance. This variance becomes capitalized in stock

prices. Therefore, this pure CF effect suggests a positive relationship between b2t and pdt.

In addition, there is a risk premium effect. The total risk premium to compensate changes

in dividend growth can be approximated with −Covt(mt+1,∆dt+1) = γ(1 + λt)btσ
2
c . This

compensation increases with both the price-of-risk variable λt and the consumption-dividend

comovement variable bt. When a positive fundamental shock arrives, bt and st increase and λt

decreases simultaneously. If λt was not countercyclical, the model would generate a higher risk

premium and a lower asset price, yielding a counterintuitive negative relationship between the

procyclical bt and the procyclical pdt. However, the strongly countercyclical price of risk in this

habit formation model is able to dominate and generate a positive pdt–bt relationship.

Proposition 1. Given appropriate parameter choices, there exist positive comovement effects

on the equity valuation ratio, A2, A3 > 0.

As for the other two state variables, the surplus consumption ratio effect as in CC implies

a positive A1. Different from CC, there are competing effects that determine A4. The CF

effect of uncertainty is well-understood: When macroeconomic uncertainty (nt) increases, future

dividend growth is expected to drop, driving down the current price. However, a higher nt also

induces more precautionary savings, driving down the interest rate and lowering the total return

demanded. This discount rate (DR) effect of uncertainty also appears in Bekaert and Engstrom

(2017). Given appropriate parameter choices, the CF effect dominates the DR effect when

extreme event shocks occur, yielding a negative A4; in other times, A4 becomes positive.

� Fact Check (f) and (g): Given the dividend growth dynamics in the new DGP and the

valuation ratio conjecture, the conditional variances of the log valuation ratio and the log

market return have the following approximate expressions:

V art(pdt+1) ≈ ςpd + ς1λt + ς2bt + ς3nt + ς4λ
2
t + ς5b

2
t + ς6λtbt + ς7λtnt + ς8λ

2
tnt,

V art(r
m
t+1) ≈ ςrm + a2

1ς1λt +
[
a2

1ς2 + 2a1λbσ
2
c

(
A2 + 2A3(1− φb)b

)]
bt + a2

1ς3nt + a2
1ς4λ

2
t

+
(
a2

1ς5 + 2a1ς2 + σ2
c

)
b2t +

(
a2

1ς6 + 2a1ς1
)
λtbt + a2

1ς7λtnt + a2
1ς8λ

2
tnt,

where ςpd, ςrm, ς1, ς2, ς3, ς4, ς5, ς6, ς8, a1, λb, σc, φb and b are strictly positive constants,

and ς7 = 2A1A4σnσnn is positive when the cash flow effect of nt dominates the discount

rate effect, and negative vice versa. The model has the potential to generate countercyclical

variances if the procyclical terms are counteracted by the countercyclical terms.
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4.2.2 The Total Amount of Risk and the Duffee Puzzle

The approximate analytical solution of the total amount of risk is as follows:

btσ
2
c︸︷︷︸

[1]. Immediate cash flow covariance: dividend risk

+ a1A1λtσ
2
c︸ ︷︷ ︸

[2]. Valuation covariance: benchmark time-varying amount of risk as in CC

+
[
a1A2λb + 2a1A3(1− φb)bλb + 2a1A3φbλbbt

]
σ2
c︸ ︷︷ ︸

[3]. Valuation covariance: comovement risk

+ a1

[
A1λtσ

2
n +A4σnnσn

]
nt︸ ︷︷ ︸

[4]. Valuation covariance: downside risk and uncertainty risk

,

(21)

where parameters σc, σnn, b, φb, λb and a1 are positive and σn is negative according to the DGP

estimation results in Table 4.

Term [1] captures the procyclical immediate cash flow covariance Covt(∆dt+1,∆ct+1),

or the amount of dividend risk. Meanwhile, the other three terms constitute the valuation

covariance component of the Duffee Puzzle. Specifically, Term [2] captures the amount of

risk implied from linearizing the original CC model (with a Gaussian consumption shock and

constant volatility σc) and is strictly countercyclical. Term [3] captures the procyclical amount

of dividend comovement risk through the valuation channel, which is new to the literature.

Term [4] captures the amount of risk that is associated with the countercyclical macroeconomic

uncertainty, and implies that the cyclicality of Term [4] is state-dependent. At a higher risk

aversion state, the coefficient of macroeconomic uncertainty “
[
A1λtσ

2
n +A4σnnσn

]
” is more

likely to be positive, rendering Term [4] countercyclical.

In summary, the new procyclical consumption-dividend comovement state variable induces

two new procyclical terms in the amount of risk: dividend risk (via cash flows) and comovement

risk (via valuation). This analytical solution thus suggests the ability of this model to potentially

accommodate the Duffee Puzzle in a habit formation framework.

� Fact Check (h): The model has the potential to generate a countercyclical valuation

covariance if the procyclical terms are counteracted by the countercyclical terms.

4.2.3 The Equity Premium

The equity premium in this approximate analytical solution is expressed as the product

of a countercyclical price of risk γ(1 + λt)—which is consistent with CC—and a time-varying

amount of risk that now comprises both procyclical and countercyclical terms according to

Equation (21). These terms exhibit countervailing effects on the magnitude of the equity pre-

mium. On the one hand, the introduction of the countercyclical uncertainty state variable nt

makes the asset riskier, since both the time-varying uncertainty and price of risk are higher

during economic turmoil. From this perspective, a higher unconditional equity premium is ex-
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pected. On the other hand, the introduction of the procyclical comovement state variable bt

lowers the level of the unconditional equity premium. This is because the amount of risk now

contains procyclical terms which counteract the countercyclical amount-of-risk terms and the

countercyclical price of risk. As a result, the asset becomes less risky.

Moreover, in contrast to the CC model, the conditional equity premium no longer mono-

tonically increases when consumption drops. This is because there are two types of consumption

shocks in the economy. For instance, a negative event shock increases both the price of risk

and the amount of risk, whereas a negative fundamental shock increases the price of risk while

lowering the amounts of dividend risk and comovement risk. This fundamental channel cannot

be ignored because, empirically, this fundamental shock accounts for more than 80% of the

total consumption variance in a long sample (see discussions in Section 3.2). Therefore, the

ultimate impact of a consumption shock on the conditional equity premium can be nonlinear.

Appendix E provides the derivations.

4.3 Numerical Solution

To identify the implications of each of the three state variables, I conduct an overlay-

ing numerical analysis. The baseline model, referred to as M(1) in the rest of the paper, is

an adapted Campbell and Cochrane (1999) model that features homoskedastic fundamentals,

constant consumption-dividend comovement, and time-varying surplus consumption ratio (the

only state variable). Then, M(2), building on M(1), is an adapted Bekaert and Engstrom (2017)

model that incorporates countercyclical macroeconomic uncertainty as the second state vari-

able. Finally, my model, labeled as M(3), overlays M(2) with procyclical consumption-dividend

comovement in the dividend process. Appendix C provides mathematical descriptions of M(1)

and M(2). All three models price dividend claims.

Section 4.3.1 describes the calibration of the non-DGP parameters. Then, I evaluate the

fit of the Duffee Puzzle moments in Section 4.3.2 and the fit of conventional unconditional asset

moments in Section 4.3.3.

4.3.1 Calibration and Simulation

Table 6 summarizes the four non-DGP parameters. The utility curvature parameter γ

is fixed at 2. As commonly assumed in the literature, the AR(1) coefficient of the st process,

φs, equals the AR(1) coefficient of monthly log valuation ratio. The benchmark constant risk

free rate, rfCC , as appeared in Equation (19), is chosen to match the average monthly real

short rate (proxied by the difference between the change in log nominal 90-day Treasury index

constructed by CRSP and the continuously compounded inflation rate). β is the time discount

parameter inferred from the rfCC equation.

The log valuation ratios are solved numerically using the “series method” from Wachter

(2005). M(1) is solved using a one-dimensional grid (20×1) for the one state variable: the log

surplus consumption ratio. M(2) is solved over a two-dimensional grid (20×20) for the two

state variables: the log surplus consumption ratio and macroeconomic uncertainty. The final
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model M(3) uses a three-dimensional grid (20×20×20) for all three state variables. Then, for

each model, I simulate the shocks for 100,000 months given their distributional assumptions

and parameter estimates, and construct the state variable processes accordingly. Given the

grid solutions, I apply the piecewise polynomial cubic interpolation for M(1), and the piecewise

polynomial spline interpolation for M(2) and M(3) to obtain the log valuation ratio for each

simulated month given the state variable values. All the reported theoretical moments in this

paper are calculated using the second half of the simulated dataset.

4.3.2 Fitting the Duffee Puzzle

Table 7 examines the closeness between the empirical and simulation asset moments of

Facts (a)–(h), using recession and non-recession subsamples. One challenge is to identify realistic

recessions in a simulated consumption-based economy, as this research focuses on variables’

cyclical behaviors. For this purpose, I develop an algorithm based on the simulated consumption

growth such that the algorithm mechanically mimics the identification of NBER recessions that

are based on patterns in GDP growth; details and empirical tests are provided in Appendix F.

On fitting Facts (a)–(e), most simulation moment point estimates of both recession and

non-recession periods in M(3) are within 95% confidence intervals of the actual data point

estimates. The only exception is the recession-period dividend growth volatility, σ(∆d) (Irece. =

1), due to the excessively volatile conditional mean of the dividend growth in simulating nt.
12

Nevertheless, row “σt(∆dt+1) ∼ Irece.,t” in Table 7 confirms that the conditional dividend

growth variance is strictly procyclical. M(3) by design outperforms M(1) and M(2). While

most simulation moments of M(1) and M(2) are not rejected by the empirical counterparts,

they fail to fit all of the cyclical moments.

On fitting Facts (f) and (g), M(1)—an adapted CC model—generates recession and non-

recession volatilities of rm − ∆d and rm that are significantly lower than the empirical coun-

terparts. Meanwhile, M(2) and M(3), which allow for countercyclical consumption growth

uncertainty nt, improve the fit with realistic magnitudes. It is noteworthy that the new co-

movement state variable bt in M(3) dampens the volatilities of rm −∆d and rm. As suggested

by the analytical solution in Equation (21), the procyclical dividend risk and comovement risk

counteract the countercyclical terms in the amount of risk. Assets in M(3) become less risky:

When consumption drops during recessions, asset prices do not drop as much as those in M(2).

On fitting Fact (h), M(1) and M(2) tend to generate non-recession valuation covariance

that is too high, e.g., 4.0956×10−5 in M(1) and 3.1658×10−5 in M(2) versus 1.7436×10−5

in data. The reason why M(1) generates a high valuation covariance despite the low price

variation is that there is a high correlation (around 0.7 in my simulation) between the price

dynamics and consumption growth innovations through the surplus consumption ratio. Such

correlation decreases to around 0.25 in M(2) due to adding a second state variable to the

price dynamics. Despite the misfit of M(2) in terms of matching the magnitudes, allowing

12Gamma shocks (e.g. ω̃n) are more likely to obtain extreme values than Gaussian shocks in a simulation; in
this context, it could result in a more volatile latent process of nt and thus a more volatile conditional mean of
dividend growth that is a linear function of nt.

19



for countercyclical macroeconomic uncertainty clearly generates more countercyclicality in the

valuation covariance. The difference between recession and non-recession valuation covariance

is wider in M(2) than in M(1). In M(3), one major improvement to M(2) is that both recession

and non-recession valuation covariances are now lower and statistically closer to the data point

estimates. This is largely because of the lower price variability as shown in row (f). Therefore,

M(3) fits Fact (h) from both the perspectives of cyclicality and magnitude.

This overlaying numerical analysis so far demonstrates that price dynamics become differ-

ent after introducing the new procyclical comovement state variable in M(3). Finally, as shown

in the last two rows in Table 7, M(3) is the only model (among the three) that simulates point

estimates of recession and non-recession amount of consumption risk that cannot be rejected

by data. In contrast, M(1) and M(2) generate amount of consumption risk point estimates that

are higher than data point estimates. As a result, M(3) potentially addresses the Duffee Puzzle

by generating a more realistic magnitude of consumption risk.13

As overidentification tests, Table 8 evaluates the fit of the three models in terms of 17

unconditional moments including the eight Duffee-Puzzle moments: σ(∆c), σ(∆d), ρ(∆d,∆c),

C(∆d,∆c), b(∆d,∆c), σ(rm −∆d), σ(rm), C(rm −∆d,∆c). As shown in the first 13 rows, de-

spite the different DGP assumptions among the three overlaying models, all their unconditional

simulation moments are shown to match the data generally well, which hence is not an infor-

mative evaluation. M(1) generates significantly smaller unconditional volatilities of rm − ∆d

and rm but significantly larger unconditional C(rm − ∆d,∆c) and C(rm,∆c) than data. On

the other hand, M(2) and M(3) are not rejected by data in terms of these 4 moments. The

magnitude of the unconditional return-consumption covariance in M(3), 3.1738×10−5, is the

closest to its data counterpart, 2.4822×10−5.

4.3.3 Conventional Moments

Finally, Table 9 reports the fit of the models with respect to a set of conventional un-

conditional moments. Incorporating the procyclical comovement state variable, M(3) implies

a slightly lower unconditional equity premium, 5.6524%, than M(2), 6.2414%. This is consis-

tent with the economic intuition mentioned in Section 4.2.3: The amount of risk in M(3) now

contains procyclical immediate cash flow and comovement risks, resulting in a less risky asset.

In addition, consistent with the literature, the introduction of countercyclical macroeconomic

uncertainty state variable clearly increases the equity premium significantly, from 3.8751% in

M(1) to 6.2414% in M(2). The uncertainty state variable overall introduces additional counter-

cyclical dynamics into the amount of risk, resulting in a more risky asset and a lower average

valuation ratio (which is also shown in Table 9).

Because the procyclical comovement state variable contributes positively to the valuation

ratio, M(3) implies volatility of the valuation ratio at 0.2594, which is the highest and the closest

13Note that the non-recession point estimate of return-consumption covariance (1.8546×10−5) is smaller in
magnitude than the recession estimate (3.3894×10−5) in data, although both are statistically indifferent according
to the t test. The slightly higher recession-sample estimate is expected because the conditional means of both
return and consumption growth series are expected to comove more during recessions.
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to the data point estimate among the three models. The market return volatility implied by

M(3) is slightly smaller, 14.7234%, than that implied by M(2), which can be explained analyt-

ically as follows. Unconditional market return variance can be roughly decomposed into three

components: unconditional variances and covariance of changes in pd and ∆d. In particular, ac-

cording to the law of iterated expectations, Cov(a1pdt+1−pdt,∆dt+1) = E [Covt(pdt+1,∆dt+1)]

contains a E(A1λtb̄σ
2
c ) term in M(1) and M(2) but a E(A1λtbtσ

2
c ) term in M(3) which contains

an additional negative covariance term, Cov(λt, bt) < 0. This reflects the non-linear effect of

a fundamental consumption shock in asset prices, through procyclical comovement risk and

through countercyclical risk aversion simultaneously.

The implied Sharpe Ratio from M(3), 0.3888, is the closest to the data moment because

of the smaller implied equity premium. Moreover, the kurtosis moment is matched statistically

well by all three models. M(2) and M(3) generate the same risk free rate dynamics as they

only differ in the cash flow part; this average risk free rate is statistically close to the data

counterpart.

5 Conclusion

This paper aims to understand and accommodate the Duffee Puzzle in consumption-

based asset pricing models. To achieve these aims, I first show empirically that the conditional

covariance between the immediate cash flow part of market returns (dividend growth) and con-

sumption growth is (1) procyclical and (2) a consistent source of procyclicality in the puzzle.

This is the core empirical finding of the paper. Then, I device a new DGP that is able to si-

multaneously accommodate procyclical consumption-dividend comovement and countercyclical

consumption growth volatility. Finally, I solve a variant of the Campbell and Cochrane model

incorporating this new DGP. The approximate analytical solution suggests that the procyclical

consumption-dividend comovement, as a new state variable, induces two new procyclical terms

in the amount of consumption risk: dividend risk (via cash flows) and comovement risk (via

valuation). These procyclical terms, according to the numerical solution, play a crucial role in

generating realistic magnitude of the amount of risk. Furthermore, the model, after accommo-

dating the Duffee Puzzle, implies a lower equity premium because stock prices now incorporate

procyclical risks, rendering the asset less risky.

This paper is agnostic about why dividends and consumption comove procyclically. One

potential explanation is the phenomenon documented in Lintner (1956) and Brav, Graham,

Harvey, and Michaely (2005) that managers are more likely to smooth dividend payments during

bad times, causing changes in financial payouts to be less associated with macroeconomic shocks.

Regardless of the source, the cash flow side of the aggregate economy merits further research.
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Appendices

A On the uniqueness of the DGP in Section 3

In this appendix section, I discuss why alternative modeling approaches for dividend and consumption

growth shocks may be less suited to fit the salient empirical facts (a)–(e). The key challenge is to imply both pro-

cyclical cash flow-related moments (variance and comovement) and countercyclical consumption growth variance.

My DGP achieves it by assuming two consumption shocks: the fundamental shock enters the dividend growth pro-

cess with a procyclical exposure, while the event shock determines the heteroskedasticity of consumption growth.

Alternatively, one could assume a “constant” exposure of dividend growth to the consumption fundamental

shock—what is typically assumed in the literature—but a “procyclical” fundamental shock conditional variance.

This way, during each period, the consumption growth disturbance is driven by a heteroskedastic Gaussian

shock with procyclical volatility and a heteroskedastic gamma shock with countercyclical volatility. With proper

parameter values, this model can generate procyclical consumption-dividend comovement and countercyclical

consumption variance. However, this alternative DGP has two potential problems. First, the identification of

consumption growth variance is likely to be quite difficult. The analytical expression of the consumption growth

conditional variance is now the sum of procyclical and countercyclical components. Given that a Gaussian distri-

bution is symmetric and not bounded, a heteroskedastic Gaussian fundamental shock might act as the event shock

trying to fit the left-tail events in the estimation. This likely results in countercyclical volatility of fundamental

shock. Granted, one can restrict the fundamental shock volatility to be procyclical by restricting signs of certain

parameters; however, it is difficult to interpret results of a constrained estimation. Second, besides the estimation

difficulties, other empirical facts will be immediately violated. For instance, the implied consumption-dividend

comovement (due to the constant exposure) becomes countercyclical. In addition, while the data finds significant

and negative correlation (-0.2090) between consumption and dividend growth variances, this alternative DGP

will generate a strictly positive correlation between consumption and dividend growth variances because of the

constant and positive exposure.

B Estimation procedure for the new DGP in Section 3

Given that there is no feedback from the dividend growth process to the consumption growth process,

I conduct a two-step estimation procedure. The first step estimates the consumption growth system. I use a

filtration-based maximum likelihood methodology in Bates (2006) to estimate the latent macroeconomic uncer-

tainty state variable nt and the two consumption shocks, the fundamental shock ̂̃ωc,t+1 and the event shock̂̃ωn,t+1 where “ω̂” indicates the estimated variables. The conditional consumption growth variance and its long-

run average are then obtained, V̂c,t and V̂ c,t.

The second step takes the dividend growth data ∆dt+1 and state variable and shock estimates from

the first step {V̂c,t, V̂ c,t, σ̂c, ̂̃ωc,t+1}. To provide estimation convenience, dividend growth is first projected

onto V̂c,t − V̂ c,t to obtain the estimates for {d, φd}. The rest of the dividend growth system is then es-

timated by maximizing the sum of the log likelihoods of the implied cash flow-specific shock ω̃d,t+1. The

MLE estimation does not impose constraints on the non-negativity of bt estimates, but imposes one con-

straint to ensure a valid gamma density function for ω̃d,t+1 at any time stamp t. If ω̃d,t+1 in the data is

more right-tailed and is bounded below, then σd will be estimated to be positive and the constraint is as fol-

lows: −σdVd ≤ min∀t∈1,...,T
(

∆dt+1 − d̂− φ̂d(V̂c,t − V̂ c,t)− bt ̂̃ωc,t+1

)
. On the other hand, if ω̃d,t+1 is more left-

tailed and is bounded above, then σd will be estimated to be negative with the following constraint: −σdVd ≥
max∀t∈1,...,T

(
∆dt+1 − d̂− φ̂d(V̂c,t − V̂ c,t)− bt ̂̃ωc,t+1

)
.
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C Intermediate models in Section 4

In this appendix section, I provide details of the two intermediate models in the overlaying framework.

M(1) is an adapted CC model with constant macroeconomic uncertainty and consumption-dividend comovement,

while M(2) builds on M(1) and allows for time-varying macroeconomic uncertainty. The DGPs of the models are

as follows:

M(1): ∆ct+1 = c+ σcω̃c,t+1 + σnω̃n,t+1, (C.1)

ω̃c,t+1 ∼ N(0, 1), ω̃n,t+1 ∼ Γ(n, 1)− n, (C.2)

∆dt+1 = d+ bσcω̃c,t+1 + σdω̃d,t+1, (C.3)

ω̃d,t+1 ∼ Γ(Vd, 1)− Vd, (C.4)

c = 0.0025, σc = 0.0029, σn = −0.0023, n = 0.3742,

d = 0.0015, σd = 0.000123, Vd = 8933.5172, b = 0.0944;

M(2): ∆ct+1 = c+ σcω̃c,t+1 + σnω̃n,t+1, (C.5)

nt+1 = (1− φn)n+ φnnt + σnnω̃n,t+1, (C.6)

ω̃c,t+1 ∼ N(0, 1), ω̃n,t+1 ∼ Γ(nt, 1)− nt, (C.7)

∆dt+1 = d+ φd(Vc,t − V c) + bσcω̃c,t+1 + σdω̃d,t+1, (C.8)

Vc,t = V art (∆ct+1) = σ2
c + σ2

nnt, V c = E (Vc,t) , (C.9)

ω̃d,t+1 ∼ Γ(Vd, 1)− Vd, (C.10)

c = 0.0025, σc = 0.0029, σn = −0.0023, n = 0.3742, φn = 0.9500, σnn = 0.2772,

d = 0.0015, φd = −630.8768, σd = 0.000123, Vd = 8933.5172, b = 0.0944;

M(3): The new DGP in this paper (as shown in Table 4).

The log surplus consumption ratios in all three models follow an AR(1) process with time-varying sensitivities

to the consumption growth innovation. The sensitivity functions are chosen as follows:

λt =

{
1

St

√
1− 2(st − st)− 1, st ≤ smax,t

0, st > smax,t
, (C.11)

st = log(St), (C.12)

smax,t = st +
1

2
(1− S2

t ), (C.13)

M(1): St =

√
(σ2
c + σ2

nn)
γ

1− φs
, (C.14)

M(2/3): St =

√
(σ2
c + σ2

nnt)
γ

1− φs
. (C.15)

Given the sensitivity functions, the real risk free rates are time-varying with a higher moment appended to reflect

the non-Gaussian nature of the consumption event shock:

M(1): rft = − lnβ + γc+ γ(1− φs)(st − st)−
1

2
γ2(1 + λt)

2σ2
c − [γ(1 + λt)σn − ln (1 + γ(1 + λt)σn)]n

≈ − lnβ + γc+ γ(1− φs)(st − st)−
1

2
γ2(1 + λt)

2σ2
c −

1

2
γ2(1 + λt)

2σ2
nn︸ ︷︷ ︸

fix=− (1−φs)γ
2

+
1

3
γ3(1 + λt)

3σ3
nn; (C.16)

M(2/3): rft = − lnβ + γc+ γ(1− φs)(st − st)−
1

2
γ2(1 + λt)

2σ2
c − [γ(1 + λt)σn − ln (1 + γ(1 + λt)σn)]nt

≈ − lnβ + γc+ γ(1− φs)(st − st)−
1

2
γ2(1 + λt)

2σ2
c −

1

2
γ2(1 + λt)

2σ2
nnt︸ ︷︷ ︸

fix=− (1−φs)γ
2

+
1

3
γ3(1 + λt)

3σ3
nnt. (C.17)
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(C.18)

The calibration plots of the sensitivity functions are as follow:
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D Quadratic approximation of the moment generating function of a random

variable that is a linear combination of Gaussian, χ2, and gamma shocks

Suppose a random variable x receives three independent shocks,

x = µ+ x1ω + x2(ω2 − 1) + x3(ε− α),

ω ∼ N(0, 1),

ω2 ∼ χ2(1),

ε ∼ Γ(α, 1),

(D.1)

where µ is the unconditional mean of variable x, and {xt, x2, x3} are constant coefficients. Recall the moment

generating function (MGF) is mgfω(ν) = exp(ν2/2) for a standard Gaussian shock, mgfω2(ν) = (1 − 2ν)−1/2

for a χ2 shock, and mgfε(ν) = (1 − ν)−α for a gamma shock with a unit scale parameter and shape parameter

equal to α. Therefore, the MGF of x, mgfx(ν) = E[exp(νx)], is as follows,

mgfx(ν) = exp(νµ)Et[exp(νx1ω + νx2(ω2 − 1) + νx3(ε− α))]

= exp(νµ− νx2 − νx3α)mgfω(νx1)mgfω2(νx2)mgfε(νx3)

= exp(νµ− νx2 − νx3α) exp

{
1

2
(νx1)2

}
(1− 2νx2)−1/2 (1− νx3)−α

= exp(νµ− νx2 − νx3α) exp

{
1

2
(νx1)2 − 1

2
ln (1− 2νx2)− α ln (1− νx3)

}
. (D.2)

It can be easily shown that the quadratic approximation to ln (1− z) is −z− 1
2
z2. The quadratic approximations

to mgfx(ν) yields:

mgfx(ν) ≈ exp(νµ− νx2 − νx3α) exp

{
1

2
(νx1)2 + νx2 + (νx2)2 + νx3α+

1

2
(νx3)2α

}
= exp(νµ) exp

{
1

2
(νx1)2 + (νx2)2 +

1

2
(νx3)2α

}
= exp(νE(x)) exp

{
1

2
ν2V (x)

}
. (D.3)

Define X = exp(x) and set ν = 1,

E(X) ≈ exp

{
E(x) +

1

2
V (x)

}
. (D.4)

27



E Approximate analytical solution of M(3)

In this appendix section, I solve the theoretical model in Section 4 with an approximate analytical solution.

There are three approximations. The first approximation conjectures the log valuation ratio pdt, pdt = A0 +

A1st + A2bt + A3b
2
t + A4nt. The second approximation applies the Campbell–Shiller linearization to the log

market return, rmt+1 = ∆dt+1 + a1pdt+1 − pdt + a0. The log market return can be approximately expressed as a

linear function of the state variables and four independent shocks to the economy:

rmt+1 = d− φdσ2
dn+ a1

(
A0 +A1(1− φs)s+A2(1− φb)b+A3((1− φb)b)2 +A4(1− φn)n

)
−A0 + a0

+A1(a1φs − 1)st +
(
a1A2φb + 2a1A3(1− φb)bφb −A2

)
bt

+A3(a1φ
2
b − 1)b2t +

(
a1A4φn −A4 + φdσ

2
d

)
nt

+
(
a1A1λt + a1A2λb + 2a1A3(1− φb)bλb + (1 + 2a1A3φbλb)bt

)
σcω̃c,t+1

+ a1A3σ
2
cλ

2
b (ω̃c,t+1)2 + a1 (A1λtσn +A4σnn) ω̃n,t+1 + σdω̃d,t+1. (E.1)

The third approximation applies quadratic approximation to the MGF of random variable mt+1 + rmt+1 using the

proof in Appendix D. With the approximate logarithm of the Euler equation and by equating the terms for the

state variables, the coefficients in the valuation ratio equation are solved:

A1 =
γ(1− φs)
1− a1φs

> 0, (E.2)

A2 =
(1 + 2a1A3φbλb)

[
γ(1 + λt)− (a1A1λt + 2a1A3(1− φb)bλb)

]
σ2
c − 2a1A3(1− φb)φbb

a1φb − 1 + a1λb(1 + 2a1A3φbλb)σ2
c

> 0. (E.3)

A3 =
−2a1φbλbσ

2
c + 1− a1φ2

b ±
√

(2a1φbλbσ2
c − 1 + a1φ2

b)
2 − 4a21φ

2
bλ

2
bσ

4
c

4a21φ
2
bλ

2
bσ

2
c

> 0. (E.4)

A4 =
ξt ±

√
ξ2t − 2σ2

nna
2
1

(
φdσ2

d + 1
2

(A1λta1 − γ(1 + λt))
2 σ2

n

)
2σ2

nna
2
1

> 0, (E.5)

ξt = 1− φna1 − a21A1λtσnσnn + γ(1 + λt)a1σnσnn. (E.6)

An approximate analytical solution of equity premium is derived, given the quadratic approximation:

Et (rmt+1)− rft +
1

2
V art (rmt+1) ≈ −Covt (rmt+1,mt+1)

= γ(1 + λt)︸ ︷︷ ︸
price of consumption risk

× {a1A1λtσ
2
c︸ ︷︷ ︸

1 . approximate amount of consumption risk in CC

+
[
a1A2λb + 2a1A3(1− φb)bλb + (1 + 2a1A3φbλb)bt

]
σ2
c︸ ︷︷ ︸

2 . additional amount of consumption risk induced by comovement

+ a1
[
A1λtσ

2
n +A4σnnσn

]
nt}︸ ︷︷ ︸

3 . additional amount of consumption risk induced by uncertainty

. (E.7)

F Identifying recessions using simulated monthly consumption growth

I develop an algorithm to identify realistic recessions based on the simulated consumption growth rates

such that the algorithm mechanically mimics the NBER recession indicator which is based on the quarterly GDP

growth rates. Here is a proposed algorithm that identifies recessions ex post:

1. Quarterly Growth: Aggregate the monthly consumption growth into a quarterly frequency;

28



2. Standardization: De-center the quarterly consumption growth by a 49-quarter moving average using 24

quarters before and after (24+1+24), and divide it with its long-term or unconditional standard deviation

to obtain the standardized consumption growth rates;

3. Fundamental Cyclical Events: Identify the recession quarters if there are at least two consecutive stan-

dardized consumption growth drops that are <-0.9;

4. Extreme Cyclical Events: For an extreme event (standardized consumption growth <= −2), if its imme-

diate adjacent quarters before and/or after exhibit negative standardized growths, then the extreme event

and its adjacent quarter(s) are considered as recession quarters. Given the immediate adjacent quarter

after (before) the extreme event, if the next (previous) quarters with consecutive standardized consump-

tion growth <-0.9, they are also considered recession quarters. The purpose is to capture extreme events

which have a buildup before and a persistent effect after.

5. Trough Points but with Positive Growths: Given the recessions identified in Steps 3 and 4, if there is a

recession period lasting for at least three quarters and the following quarter has a positive growth rate,

then this quarter is also considered a recession period. The reason is that positive growth rates could be

obtained mechanically because of the low denominator from the previous period.

To increase the plausibility of this algorithm, I apply this algorithm to actual consumption growth data from

January 1959 to June 2014. This algorithm is able to identify seven out of the eight NBER recessions; regress-

ing the consumption-based recession indicator on the NBER recession indicator yields a coefficient of 0.9038

(SE=0.0507), which is statistically close to 1; interestingly, without Step 5, the regression coefficient is 0.8795

(SE=0.0558). The plot below compares the consumption-based recessions (dashed blue) and the NBER recession

indicator (solid red). Data and codes for applications are available upon requests.
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G Dependences of the valuation ratio on s, n, and b

The three plots depict the dependences of PD on the three state variables, respectively, for all three

models. M(1): valuation ratio depends on s only and is depicted in solid black lines with circles. M(2): valuation

ratio is sensitive to s and n and is depicted in solid red lines with diamonds; M(3): valuation ratio is sensitive to

s, n and b and is depicted in blue lines with squares. The dimension is reduced by fixing the other state variables

at their mean values (mean of s: -2.9008; mean of n: 0.3781; mean of b: 0.0942) and critical values (e.g., 5%

percentile in s: -3.6368; 95% percentile in n: 1.4761; 95% percentile in b: 0.3932). Hence, the lines in the plots

can be interpreted with a conditional statement.

In the top plot, the positive association between PD and the comovement state variable b confirms the

analytical prediction. The M(1) and M(2) horizontal lines intersect the E(s)–E(n) plane of M(3) at around

b = 0.094, which is expected because b = 0.094 according to Table 4. The convex increasing pattern indicates

that the impact of b on asset prices is stronger when the level of consumption-dividend comovement is higher. This

is consistent with my replication of the model in an earlier version of the paper, where I calibrate a procyclical b

with an average around 0.35; in that economy, the amount of consumption risk is significantly (more) procyclical
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and the immediate cash flow part even yields 20% of the total variation—More information is available upon

request. In the present calibration, the mean (and in fact median) of the simulated bt is around 0.1 and its 95th

value is 0.39.

The valuation ratio implied by M(3) at the “lower 5th s”–“E(n)” plane (s = −3.6368, n = 0.3781) lays

below the “E(s)”–“E(n)” plane (s = −2.9008, n = 0.3781), indicating a positive relationship between PD and

s; this is confirmed by the left bottom plot. Similarly, the valuation ratio at the “E(s)”–“higher 95th n” plane

(s = −2.9008, n = 1.4761) is above the E(s)–E(n) plane, indicating a positive relationship between PD and

n; this is confirmed by the right bottom plot. It is noteworthy that the average and 95th percentile of the

simulated nt, 0.3781 and 1.4761 respectively, are within the lower region in the bottom plot where the DR effect

still dominates the traditional CF effect (see discussions in Section 4.2.1); thus, a positive relationship between

PD and n is expected. However, the hump shape is interesting as it captures that, under extremely high macro

uncertainty, the CF effect dominates and stock prices decrease with uncertainty.
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Table 1: Conditional Correlations between Consumption Growth and Market Return Compo-
nents.

This table presents the estimation results of DCC and a cyclical DCC model (DCC-qt) using the standardized
innovations of consumption growth and market return components. Model: The conditional correlation matrix
Corrt is modeled with a quadratic form, (Q∗t )−1 Qt (Q∗t )−1, where Q∗t is the diagonal matrix with the square
root of the diagonal element of Qt on the diagonal. The off-diagonal element of Corrt is the conditional
correlation of the standardized residuals, zt+1 ≡ [z1,t+1, z2,t+1]′. The DCC-qt model is as follows,

Qt = Q12

[
1 1 + qt

1 + qt 1

]
+ α12

[
ztz
′
t −Q12

[
1 1 + qt−1

1 + qt−1 1

]]
+ β12

[
Qt−1 −Q12

[
1 1 + qt−1

1 + qt−1 1

]]
,

where parameter Q12 is the off-diagonal term of the predetermined constant conditional correlation matrix
1
T

∑T
t=1 ztz

′
t; qt is modeled as ν12SNBERt, where SNBERt is a standardized NBER recession indicator. The

DCC model is the null hypothesis of the DCC-qt model. Other Notations: “LL”, loglikelihood; the last two
rows report the likelihood ratio test statistics and its p-value. Robust standard errors are shown in parentheses.
Values in bold (italics) are statistically significant at a significant level of 5% (10%). N=665 months
(1959/02∼2014/06).

Series 1: Consumption Growth (∆c)
Series 2: Market Return (rm) Dividend Growth (∆d) rm −∆d

DCC DCC-qt DCC DCC-qt DCC DCC-qt

Q12 0.1558 0.1558 0.0121 0.0121 0.1508 0.1508
(fix) (fix) (fix) (fix) (fix) (fix)

α12 0.0162 0.0171 0.0449 0.0437 0.0155 0.0161
(0.0115) (0.0112) (0.0458) (0.0472) (0.0111) (0.0107)

β12 0.9476 0.9457 0.3219 0.3320 0.9516 0.9512
(0.0178) (0.0190) (0.1956) (0.1594) (0.0166) (0.0175)

ν12 -0.1123 -0.1925 -0.1096
(0.0339) (0.1052) (0.0333)

LL 662.49 666.70 671.48 677.08 663.09 667.74
N(param) 2 3 2 3 2 3

LR test stats. (H0=DCC) - 8.41 - 11.19 - 9.30
P-value - 0.0037 - 0.0008 - 0.0023
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Table 2: Cyclical Moments in the Empirical Model: Decompose the Duffee Puzzle.

This table provides evidence on the cyclicalities of all second and cross moments pertinent to the Duffee Puzzle
by regressing these conditional moments on the NBER recession indicator. Notations: Conditional volatility,

σt(xt+1); conditional covariance, Covt(xt+1, yt+1); conditional correlation,
Covt(xt+1,yt+1)

σt(xt+1)σt(yt+1)
; and conditional

beta,
Covt(xt+1,yt+1)

σ2
t (xt+1)

; “b(INBER)”, regression coefficient; “SE”, standard error; “Counter-”, countercyclical;

“Pro-”, procyclical. Given the magnitude of covariances, regression coefficients and SEs are scaled up by 105 for
reporting purposes. Values in bold are statistically significant at a one-sided significant level of 5%. . N=665
months (1959/02∼2014/06).

1. Volatility: σt(∆ct+1) σt(r
m
t+1) σt(∆dt+1) σt(r

m
t+1 −∆dt+1)

b(INBER,t) 1.50E-04 0.0164 -0.0009 0.0205
SE (6.86E-05) (0.0004) (0.0003) (0.0009)
t 2.18 36.74 -3.46 21.99

Counter-cyclical Counter- Pro- Counter-

2. Duffee Puzzle: Covt(r
m
t+1,∆ct+1) Covt(∆dt+1,∆ct+1) Covt(r

m
t+1 −∆dt+1,∆ct+1)

b(INBER,t) (×105) -0.0092 -0.0317 0.2276
SE (×105) (0.1019) (0.0173) (0.1107)
t -0.09 -1.84 2.06

Pro- Pro- Counter-

3. Duffee Puzzle, Extensions: Corrt(r
m
t+1,∆ct+1) Corrt(∆dt+1,∆ct+1) Corrt(r

m
t+1 −∆dt+1,∆ct+1)

b(INBER,t) -0.0541 -0.0082 -0.0460
SE (0.0063) (0.0044) (0.0062)
t -8.56 -1.89 -7.45

Pro- Pro- Pro-
βt(r

m
t+1,∆ct+1) βt(∆dt+1,∆ct+1) βt(r

m
t+1 −∆dt+1,∆ct+1)

b(INBER,t) -0.1630 -0.0342 0.1517
SE (0.1160) (0.0209) (0.1314)
t -1.40 -1.64 1.15

Pro- Pro- Counter-
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Table 3: Seven Extant Consumption-Based Asset Pricing Models.

This table summarizes the cyclicality of Duffee Puzzle moments across seven well-cited variants of
habit-formation and long-run risk models. (1) “CC1999”: Campbell and Cochrane (1999, JPE); (2)
“BEX2009”: Bekaert, Engstrom, and Xing (2009, JFE) allow time variation in both uncertainty and risk
aversion in square root-type processes; (3) “BE2017”: Bekaert and Engstrom (2017, JPE) decompose aggregate
consumption innovation into asymmetric gamma shocks but still assume constant exposures of dividend growth;
(4) “BY2004”: Bansal and Yaron (2004, JF); (5) “BTZ2009”: Bollerslev, Tauchen, and Zhou (2009, RFS)
assume a time-varying volatility of volatility in a square root-type process that is shown in closed form as the
state variable driving the time variation in equity variance premium; (6) “BKY2012”: Bansal, Kiku, and Yaron
(2012, CFR) are the first to model a positive comovement between consumption growth and dividend growth
under the LRR setting; (7) “SSY2015”: Segal, Shaliastovich, and Yaron (2015, JFE) introduce asymmetric
consumption shocks in a long-run risk framework. Column “Data” refers to the stylized facts presented in
Table 2. “Const.” indicates a constant moment, “Counter-” countercyclical, and “Pro-” procyclical (based on
correlations with consumption growth).

(1) (2) (3) (4) (5) (6) (7)
Data CC1999 BEX2009 BE2017 BY2004 BTZ2009 BKY2012 SSY2015

Habit Habit Habit LRR LRR LRR LRR

(a). V art(∆ct+1) Counter- Const. Counter- Counter- Counter- (~) Counter- (~) Counter- (~) Counter- (~)
(b). V art(∆dt+1) Pro- Const. Counter- Counter- Counter- (~) Counter- (~) Counter- (~) Const.
(c). Covt(∆dt+1,∆ct+1) Pro- Const. Counter- Counter- 0 Counter- (~) Counter- (~) 0
(d). Corrt(∆dt+1,∆ct+1) Pro- 0.2 Const. Unclear 0 1 Const. 0
(e). βt(∆dt+1,∆ct+1) Pro- Const. Const. Pro- (∗) 0 Const. Const. 0
(f). V art(r

m
t+1 −∆dt+1) Counter- Counter- Counter- Counter- Counter- (~) Counter- (~) Counter- (~) Counter- (~)

(g). V art(r
m
t+1) Counter- Counter- Counter- Counter- Counter- (~) Counter- (~) Counter- (~) Counter- (~)

(h). Covt(r
m
t+1 −∆dt+1,∆ct+1) Counter- Counter- Counter- Counter- 0 0 0 Counter- (~)

(Duffee). Covt (rmt+1,∆ct+1) Pro- Counter- Counter- Counter- 0 Counter- (~) Counter- (~) Counter- (~)

(∗) Procyclical when the scale parameter of bad uncertainty shock in the total consumption shock (σcn) is
greater than the scale parameter of bad uncertainty in dividend (σdn) in BE2017.
(~) Countercyclical when the time-varying consumption volatility is modeled to be countercyclical; note that
the time-varying volatility is a crucial feature of LRR models; however, the LRR models do not imply
countercyclical volatility because the volatility shock and the consumption shock are assumed uncorrelated.
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Table 4: The New DGP for the Joint Consumption-Dividend Dynamics.

Consumption and dividend growth have the following joint dynamics:

∆ct+1 = c+ σcω̃c,t+1 + σnω̃n,t+1,

nt+1 = (1− φn)n+ φnnt + σnnω̃n,t+1,

∆dt+1 = d+ φd
(
Vc,t − V c

)
+ btσcω̃c,t+1 + σdω̃d,t+1,

bt+1 = (1− φb)b+ φbbt + λbσcω̃c,t+1,

Vc,t = σ2
c + σ2

nnt,

V c = σ2
c + σ2

nn,

where the consumption fundamental shock ω̃c,t+1 ∼ N(0, 1), the consumption event shock
ω̃n,t+1 ∼ Γ(nt, 1)− nt, and the dividend-specific shock ω̃d,t+1 ∼ Γ(Vd, 1)− Vd. The DGP estimation adopts a
two-step procedure and uses the AR(3)-de-meaned consumption growth and the original dividend growth as
∆ct+1 and ∆dt+1 (see details in Appendix B). Panels A and B present the estimation results; “ADF Test”
reports the augmented Dickey-Fuller test statistics with the null that latent state variables nt+1 and bt+1 follow
unit root processes; “b(INBER,t)” reports the sensitivity of the state variables to the NBER recession indicator,
which leads to the cyclicality result. Standard errors are shown in parentheses. Values in bold are statistically
significant at a significant level of 5%. N=665 months (1959/02∼2014/06).

Panel A. Estimation Results, Consumption Panel B. Estimation Results, Dividend
∆ct+1 nt+1 ∆dt+1 bt+1

c̄ 0.0025 n̄ 0.3742 d̄ 0.0015 b̄ 0.0944
(0.0001) (0.1609) (0.0004) (0.1612)

σc 0.0029 φn 0.9500 φd -630.8768 φb 0.3159
(0.0001) (0.0264) (225.7119) (0.1561)

σn -0.0023 σnn 0.2772 σd 1.23E-04 λb 59.9163
(0.0005) (0.1027) (3.36E-06) (5.4008)

Vd 8933.5172
(488.4230)

ADF Test -4.298 ADF Test -18.775
b(INBER,t) 0.5926 b(INBER,t) -0.1240
Cyclicality Counter- Cyclicality Pro-

Table 5: Properties of DGP Shocks.

Panel A presents the summary statistics of the three filtered monthly shocks from the DGP. Panels B reports
the correlation between the monthly and quarterly shocks and business cycle indicators; quarterly shocks use
the average of monthly shocks within the quarter; business cycle indicators include the NBER recession
indicator and the detrended ĉay measure from Lettau and Ludvigson (2001). Bootstrapped standard errors are
reported in parentheses. Values in bold are statistically significant at a significant level of 5%. N=665 months
(1959/02∼2014/06).

Panel A. Summary statistics Panel B. Correlation w/ BC
ω̃c ω̃n ω̃d ω̃c ω̃n ω̃d

Mean 1.71E-03 2.42E-03 1.66E-04 INBER, monthly -0.18 0.13 -0.11
(0.04) (0.02) (3.62) (0.04) (0.04) (0.04)

Standard Deviation 0.97 0.44 94.47

(0.03) (0.06) (3.87) ω̃Qc ω̃Qn ω̃Qd
Scaled Skewness 0.18 5.44 0.19 INBER, quarterly -0.27 0.25 -0.23

(0.13) (0.57) (0.25) (0.07) (0.07) (0.07)
Excess Kurtosis 0.45 40.52 2.70 ĉay, quarterly -0.22 0.06 0.01

(0.50) (8.38) (0.56) (0.06) (0.06) (0.07)
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Table 6: Non-DGP Model Parameter Choices (∗=annualized).

This table presents the non-DGP parameter choices and the derived parameter values. The AR(1) coefficient of
st (φs) is obtained from the AR(1) coefficient of the monthly log valuation ratio; rfCC is the constant
benchmark risk free rate and is chosen to match the average real 90-day Treasury bill rate, which is proxied by
changes in log nominal 90-day Treasury index (source: CRSP) minus inflation rate (source: FRED)
continuously compounded; β is the time discount parameter derived from the rfCC equation. Monthly data
covers the period 1959/01-2014/06.

1. Non-DGP parameters: Notation Value
Curvature parameter γ 2

∗ st persistence φs 0.9236
∗ Risk free rate (%) rfCC 1.4854

2. Derived parameters:
∗ Discount rate β 0.9694

Steady-state surplus consumption ratio, M(1) S̄ 0.0559
Maximum log surplus consumption ratio, M(1) smax -2.3863
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Table 7: Theoretical Models: Immediate Cash Flow Part of the Duffee Puzzle.

This table evaluates the abilities of three overlaying theoretical models to fit Facts (a)–(h) and the Duffee
Puzzle. These facts are established in Section 2. Empirical Moments: Column “Data” presents three
empirical benchmarks of each fact: (1) unconditional moments using data during non-recessions (INBER = 0)
and (2) recessions (INBER = 1), and (3) a regression coefficient of the DGP-implied conditional moments on
the NBER recession indicator. Bootstrapped and OLS standard errors are shown in parentheses under Column
“SE”; standard errors for Facts (c) and (e) are obtained using Delta’s method. Significance of the equality test
between the two unconditional moments are indicated next to the non-recession moment; significance of the
regression coefficient of the conditional moments is also shown; ***p < 0.01, **p < 0.05,*p < 0.1. Model
moments: The counterparts using the simulated datasets of the three theoretical models are shown under
Columns “M(1)”, “M(2)” and “M(3)”. The models are solved numerically using the “series method” introduced
in Wachter (2005), and simulated for 100,000 months; see details on calibration in Section 4.3.1. All
model-implied moments in this paper are calculated using the second half of the simulated dataset, i.e.,
50,001-100,000. The algorithm for identifying recession periods is described in Appendix F. Symbols: σ,
volatility; C, covariance; ρ, correlation; b, sensitivity. Bold (italic) values indicate that the simulation moment
point estimates are within a 95% (99%) confidence interval of the empirical moments.

Data SE M(1) M(2) M(3)
Adapted Adapted

Campbell& Bekaert& This Paper
Cochrane,1999 Engstrom,2017

s as State Variable - - Yes Yes Yes
n as State Variable - - No Yes Yes
b as State Variable - - No No Yes

(a). σ(∆c) (Irece. = 0) 0.0031* (0.0001) 0.0032 0.0032 0.0032
σ(∆c) (Irece. = 1) 0.0036 (0.0002) 0.0032 0.0035 0.0035
σt(∆ct+1) ∼ Irece.,t 4.28E-04*** (2.68E-05) - 2.47E-04 2.47E-04

(b). σ(∆d) (Irece. = 0) 0.0118*** (0.0005) 0.01158 0.01173 0.01174
σ(∆d) (Irece. = 1) 0.0092 (0.0008) 0.01177 0.01214 0.01218
σt(∆dt+1) ∼ Irece.,t -4.35E-06* (2.59E-06) - - -4.00E-06

(c). C(∆d,∆c) (Irece. = 0) (×105) 0.1110 (0.1424) 0.0818 0.0770 0.0809
C(∆d,∆c) (Irece. = 1) (×105) -0.0044 (0.1286) 0.0843 0.0868 0.0232

Ct(∆dt+1,∆ct+1) ∼ Irece.,t (×105) -0.1033*** (0.0159) - - -0.1242

(d). ρ(∆d,∆c) (Irece. = 0) 0.0303 (0.0388) 0.0223 0.0208 0.0218
ρ(∆d,∆c) (Irece. = 1) -0.0013 (0.0388) 0.0223 0.0203 0.0054

ρt(∆dt+1,∆ct+1) ∼ Irece.,t -0.0282*** (0.0042) - -0.0012 -0.0348

(e). b(∆d,∆c) (Irece. = 0) 0.1155 (0.1482) 0.0817 0.0770 0.0810
b(∆d,∆c) (Irece. = 1) -0.0034 (0.1003) 0.0815 0.0700 0.0187

bt(∆dt+1,∆ct+1) ∼ Irece.,t -0.1041*** (0.0155) - -0.0075 -0.1319

(f). σ(rm −∆d) (Irece. = 0) 0.0413*** (0.0020) 0.0146 0.0423 0.0419
σ(rm −∆d) (Irece. = 1) 0.0665 (0.0066) 0.0138 0.0537 0.0509

(g). σ(rm) (Irece. = 0) 0.0400*** (0.0020) 0.0188 0.0423 0.0420
σ(rm) (Irece. = 1) 0.0652 (0.0061) 0.0183 0.0539 0.0485

(h). C(rm −∆d,∆c) (Irece. = 0) (×105) 1.7436* (0.4925) 4.0956 3.1658 2.9983
C(rm −∆d,∆c) (Irece. = 1) (×105) 3.3938 (0.9146) 4.1321 3.9563 3.8239

(Duffee) C(rm,∆c) (Irece. = 0) (×105) 1.8546 (0.4767) 4.1775 3.2428 3.0792
C(rm,∆c) (Irece. = 1) (×105) 3.3894 (0.8966) 4.2165 4.0431 3.8470
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Table 8: Theoretical Models: Unconditional Moments of the Duffee Puzzle Components.

This table presents 17 unconditional moments from empirical and simulated datasets. Details on data, models,
and simulations are described in Table 7. Bootstrapped standard errors are shown in parentheses. Bold (italic)
values indicate that the simulation moment point estimates are within a 95% (99%) confidence interval of the
empirical moments.

Data SE M(1) M(2) M(3)
Adapted Adapted

Campbell& Bekaert& This Paper
Cochrane,1999 Engstrom,2017

s as State Variable - - Yes Yes Yes
n as State Variable - - No Yes Yes
b as State Variable - - No No Yes

E(∆c) 0.0025 (0.0001) 0.0025 0.0025 0.0025
σ(∆c) 0.0032 (0.0001) 0.0032 0.0032 0.0032

Skew(∆c) -0.1292 (0.1419) -0.2658 -0.2707 -0.2707
xKurt(∆c) 0.7779 (0.3553) 0.5342 0.8354 0.8354

Heteroskedastic ∆c Innovations Yes No Yes Yes
E(∆d) 0.0015 (0.0005) 0.0015 0.0015 0.0015
σ(∆d) 0.0116 (0.0005) 0.0116 0.0117 0.0118

Skew(∆d) 0.2268 (0.2478) 0.0285 0.0117 0.0122
xKurt(∆d) 2.7560 (0.5656) -0.0152 -0.0052 -0.0060

Heteroskedastic ∆d Innovations Yes No No Yes
C(∆dt+1,∆ct+1)(×105) 0.2140 (0.1341) 0.0831 0.0847 0.0849

ρ(∆dt+1,∆ct+1) 0.0569 (0.0343) 0.0224 0.0225 0.0225
b(∆dt+1,∆ct+1) 0.2052 (0.1278) 0.0812 0.0824 0.0825

σ(rm −∆d) 0.0458 (0.0019) 0.0147 0.0428 0.0421
σ(rm) 0.0448 (0.0019) 0.0189 0.0427 0.0422

C(rm −∆d,∆c) (×105) 2.2682 (0.5574) 4.1826 3.2568 3.0889
C(rm,∆c) (×105) 2.4822 (0.5624) 4.2657 3.3416 3.1738

Table 9: Theoretical Models: Unconditional Asset Price Statistics (∗=annualized).

This table presents 10 unconditional moments of asset prices from actual and simulated datasets. Bold (italic)
values indicate that the simulation moment point estimates are within a 95% (99%) confidence interval of the
empirical moments.

Data SE M(1) M(2) M(3)
Adapted Adapted

Campbell& Bekaert& This Paper
Cochrane,1999 Engstrom,2017

s as State Variable - - Yes Yes Yes
n as State Variable - - No Yes Yes
b as State Variable - - No No Yes

∗ E(rm − rf),% 4.7964 (2.0829) 3.8751 6.2414 5.6524
∗ σ(rm − rf),% 15.4516 (0.6197) 6.4629 14.9684 14.7234

exp [E(pd)] 35.992 (0.5461) 25.8418 17.2668 17.5131
σ(pd) 0.3847 (0.0895) 0.1090 0.2429 0.2594

∗ ac(pd) 0.9236 (0.0557) 0.9063 0.8751 0.8757
Sharpe Ratio 0.3276 (0.1501) 0.5992 0.4236 0.3888

Skewness -0.7932 (0.2592) 0.1515 -0.1816 -0.1453
xKurtosis 2.6386 (1.2713) 0.3318 0.5579 0.4870

∗ E(rf),% 1.4854 (0.1525) 1.1159 1.3608 1.3608
∗ σ(rf),% 0.9895 (0.0428) 0.0348 0.0450 0.0450
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Figure 1: Empirical Model: Time Series of the Duffee Puzzle Components.

The top plot shows the time variation in the immediate cash flow covariance (in solid blue) and the
difference between the market return covariance and the cash flow covariance (in dashed red). Both
conditional covariances are estimated from a cyclical DCC model. The market return covariance
estimates are depicted in Figure 2. The bottom plot depicts the share of the immediate cash flow
covariance in the total return covariance, expressed in percentages; the black line is the 3-month
moving average for demonstration purpose. The shaded regions are the NBER recession months from
the NBER website.
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Figure 2: Empirical Model: Time Series of the Conditional Covariance between Market Returns
and Consumption Growth.

The shaded regions are the NBER recession months from the NBER website.
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Figure 3: DGP: State Variables.

In both plots, gray line depicts the monthly estimates and the overlaying black line depicts the 3-month
moving averages. The countercyclical macroeconomic uncertainty state variable nt (top plot) is
estimated from a filtration-based maximum likelihood estimation methodology developed by Bates
(2006), and the procyclical consumption-dividend comovement state variable bt (bottom plot) is
estimated using MLE; detailed estimation procedure is provided in Appendix B; detailed estimation
results are shown in Table 4. The monthly nt (bt) estimates exhibit a significant correlation of 0.545
(-0.245) with the NBER recession indicator. The shaded regions are the NBER recession months from
the NBER website.
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The monthly -ltered fundamental shock realizations summarized at the quarterly frequency.
The detrended cosnumption-wealth ratio introduced in Lettau and Ludvigson (2001).
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B. Interpreting the Event Shock

The monthly -ltered event shock realizations summarized at the quarterly frequency.

Figure 4: DGP: Economic Interpretations of Consumption Shocks.

The plots provide graphical evidence for the economic interpretations of the fundamental shock and the
event shock. Plot A provides a quarter-to-quarter comparison between the fundamental shock (in solid
black) and the detrended consumption-wealth ratio (in dashed blue) produced from Lettau and
Ludvigson (2001), or ĉay; their correlation is significant and negative (-0.22). Plot B depicts the
quarterly event shock realizations; its correlation with the NBER recession indicator is significant and
positive (0.25). The shaded regions are the NBER recession quarters from the NBER website.
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